Ethical slaughter of fish:

Practices from large-scale production of Atlantic salmon

Past, present and future slaughter methods

U. Erikson SINTEF Fisheries and Aquaculture 7465 Trondheim, Norway

SINTEF Fisheries and Aquaculture

1

Animal welfare and fish harvesting

'From seacage to stunning/killing' : Some issues related to handling stress and fish welfare

- Common commercial practices
- Different stunning/killing methods
- Welfare indicators

Live fish transport

- Seacage to processing plant -

Live transport with well-boat

From seacage to processing plant

Today: 'Open system'

Alternatively: 'Closed system'

- Good SW quality
- 'Safe' transport (low mortality)
- Commonly without adverse effects on product (fillet) quality
- 1. Transport through 'high-risk' waters (avoid infections/diseases or pollution)
- 2. RSW chilling of fish during transport
- SW quality deteriorates rapidly
- Transport may be risky (high mortality) time dependent!
- Adverse behaviour

Typical processing line for slaughter of salmonids

Harvesting and processing of salmonids

Some typical key figures

- Fish fasted for 1 2 weeks
- Fish weight 2 7 kg
- Biomass produced per shift (7h) 100 tons¹
 - = 15 000 kg h⁻¹ or 3000 individuals h⁻¹ (mean weight 5 kg)
- Body (acclimation) temperatures 4 -18 °C

Carbon dioxide stunning

- CO₂ levels >> 400 mg l⁻¹
- 200 500 mg CO₂ I ⁻¹ necessary for complete anaesthesia of large Atlantic salmon (Iwama & Ackerman 1984, Bell 1987)
- Crowding effects
- Slaughtered fish exhausted

RSW live chilling followed by carbon dioxide stunning

Sedated (live chilled) fish transferred to CO₂ tanks became exhausted as before

Live chilling combined with mild carbon dioxide anaesthesia in oxygen-saturated RSW

Typical RSW tank 30 - 40 m³

RSW live chilling

- Recirculated water: adverse water quality-

- **Foaming (sometimes)**
- Reddish water (blood?)

	Cage	RSW
pH :	8.2	6.3 - 7.0
$NH_4^+-N (mg I^{-1})$:	0.0 - 0.1	2.1-49.6
NH ₃ (μg I ⁻¹) :	0.0	0.3 - 5.3
Alkalinity (mmol ⁻¹) :	2.2 - 2.3	2.5 - 3.0
Colour (mg Pt I ⁻¹) :	2 - 3	10 - 77
Total Organic Carbon (mg l ⁻¹) :	1- 3	11- 25 (mucus?)
Fe ³⁺ (µg I ⁻¹) (indices of haem) :	4 - 9	54 – 330 (blood)

Histopathological evaluation of gill epithelia before and after live chilling showed that no damage was inflicted

Fish behaviour in closed systems

Adverse behaviour in a RSW live chilling tank

Oxygen supersaturation (160 %) SW temperature 2°C

Reduced gill ventilation rate \rightarrow hypercapnia and blood acidosis

RSW live chilling

- Control of CO₂ and O₂ levels ! -
- Carbon dioxide: 70 150 mg l⁻¹
- Dissolved oxygen: 70 100 % saturation
- RSW temperature: 0.0 ± 0.5 °C
- Fish anaesthetized after 2 3 min
- $\Delta T_{sw Rsw}$: 4 18 °C (Instant chilling, i.e. no acclimation)
- Lethal temperatures for Atlantic salmon: 0.7 °C (Saunders, 1986); -1.4 to -1.7 °C (Skuladottir et al., 1990)
- Fish holding time in RSW tank: 30 60 min

Future stunning methods

RSW live chilling

Percussion stunning (or iki jime)

Electrical stunning

Eugenol (AQUI-S[™])*

*Presently not allowed in EU and Norway

Percussion stunning

Fish are stunned/killed with a sharp blow to the head (Capacity per stunner: >1 fish sec⁻¹)

Future stunning methods

Electrical stunning

- Individual or bulk stunning
- Control of stunning parameters (eg. voltage, current, frequency, time) crucial!

Eugenol / AQUI-S™

- Anaesthetic added to a tank
- In principle, very simple method
- Withdrawal time (human consumption)

'Ethical processing line for farmed cod'

'Ethical slaughter of salmonids: RSW live chilling vs percussion stunning'

Stress and welfare indicators

Fish behaviour

- Blood samples (pH, Na⁺, K⁺, Cl⁻, glucose, lactate, hematocrit, cortisol...)
- Muscle biochemistry initial pH in white muscle. Indices of handling stress (struggling / escape behaviour)

Blood samples and fish in processing lines

Rested and exhausted Atlantic salmon (muscle pH)

Plasma chloridePlasma glucoseHematocrit

•No differences between groups [cage, pumping, live chilling (?), percussion stunning]

•Plasma values typical of rested fish

Stress indicators – White muscle pH at t =0h

pH range in live fish:

pH 7.4 \pm 0.1 : Rested fish pH 7.1 \pm 0.1 : Partially stressed pH 6.8 \pm 0.1 : Exhausted fish

•Directly linked to rigor mortis onset

•Affects fillet quality

Conclusions

R & D is currently taking place to improve current fish slaughter methods from an animal welfare point of view ('rested harvesting', pumping, bleeding, time to rigor onset, reducing manpower)

Documentation of animal welfare (large-scale, commercial use) – how?

Indicators of fish welfare – behaviour and extent of stuggling (escape behaviour). Other criteria?

