

Novel human-cell based models to study neurodegeneration

Nordic 3R webinars, 5.-6.5.2021

Šárka Lehtonen, PhD, Docent in Neuropharmacology
Head of Human brain disease modelling group

Current in vivo approach does not necessary predict human effects

- ➤ Traditional drug success rate from preclinical stage to phase I clinical trials is only 30 % and in clinical trials 10%.
- ➤ Clinical trials of CNS drugs have shown a very low overall success rate (6.2% vs. 13.3% for non-CNS drugs)
- ➤ For AD, only 1 out of 244 experimental compounds in Alzheimer's clinical trials was approved during a 15-year period

Average cost for approved drug: over \$ 2 billion Average time: 10 years

Neurodegenerative diseases

- associated with neuronal loss, cellular dysfunction, and pathological accumulation of proteins in the brain
- > this causes problems with movement or mental functioning (called dementias)
- > lack of efficient treatment
- ➤ The fastest-growing threats of old age include dementia, AD, stroke, PD, and progressive hearing loss.
- ➤ Dementia incidence outpaces all other disorders. The economic burden of dementia is 12 times that of cancer.

FINLAND takes a lead among countries with highest rates of deaths with dementia. **54 people dying per 100,000** in the Finnish population every year due to Alzheimer's and other dementias.

MODELING HUMAN NEURODEGENERATIVE DISEASES

iPSCs can give advantages over traditional animal models in that they more accurately represent the human genome

UEF // University of Eastern Finland

Where do we go from here?

iPSCs

In vitro models

Albert et al., 2021 IJMS 22(9), 4334.

Important AD studies utilizing hiPSC-derived cells

Table 2 Select important AD studies utilizing iPSC-derived brain cells

Model	Reference	Mutation(s)	Significance
Neurons	eurons Israel et al. sAD, APP ^{Dp} Early study of iPSC modeling; elevated Aβ, p-tau, endosome accum		Early study of iPSC modeling; elevated Aβ, p-tau, endosome accumulation in AD neurons
	Shi et al. [98]	Down syndrome	Elevated Aβ secretion, Aβ aggregation, tau phosphorylation in DS neurons
	Wang et al. [39]	Isogenic APOE3, APOE4 and APOE null	Elevated $A\beta$ and p-tau levels, GABAergic neuron degeneration in APOE4 neurons; identification of small molecule APOE4 structure corrector
Astrocytes	Oksanen et al. [128]	Isogenic PSEN1 ^{ΔE9}	Increased $A\beta$ production and oxidative stress, altered cytokine release and Ca^{2+} homeostasis, reduced neuronal support function in PSEN1 astrocytes
	Lin et al. [38]	Isogenic APOE3 and APOE4	Impaired Aβ clearance and increased cholesterol content of APOE4 astrocytes
Microglia	Lin et al. [38]	Isogenic APOE3 and APOE4	Reduced Aß uptake from media and fAD organoids, reduced morphological complexity of APOE4 microglia
3D cultures	Choi et al. [56]	Overexpression of APP ^{K670N/M671L} , APP ^{V717I} , PSEN1 ^{ΔE9}	Robust deposition of $A\beta$ and filamentous tau in vitro; demonstrates that $A\beta$ can cause tau deposition
	Park et al. [170]	Overexpression of APP ^{K670N/M671L} , APP ^{V7171} , PSEN1 $^{\Delta E9}$	Triculture model system incorporating iPSC-derived neurons, astrocytes, and immortalized human microglia; recapitulates AD phenotypes, microglial recruitment, and neuroinflammation

Glial cells making up approximately half of the cells in the CNS and along with neurons play an equally central role in neurodegenerative diseases

hiPSC cells were generated from healthy controls and $PSEN1 \Delta E9$ patients.

Astrocytes in the healthy CNS

hiPSCs efficiently differentiate into astrocytes

Maintenance of homeostasis

Regulation of blood flow

Regulation of blood-brain barrier

Recycling of neurotransmitters

Activity-dependent regulation of synapse number and function

> Regulation of neurogenesis

$PSEN1 \Delta E9$ astrocytes exhibit amyloidogenic properties and DAPT efficiently block A β production

DAPT –gamma secretase inhibitor

Aβ 1-42 – 10% of total, highly fibrillogenic, readily aggregated, and neurotoxic

Nrf2 induction significantly reduces Abeta 1-42 secretion and leads to a healthier Abeta ratio in AD astrocytes

Nrf2 – transcription factor regulating the expression of antioxidant genes/proteins SFN – Sulforaphane

3D co-culture model reveals an important role for astrocytes in neuronal activity

Humanized mouse

Humanized mouse model_forebrain

Type of study	Transplanted human cell type	Outcome of transplantation	References
rag2 ^{-/-} or rag1 ^{-/-} immunodeficient mice	A2B5+/PSA-NCAM ⁻ (from human 17-22-week old fetuses); transpl.to forebrain 2 locations; 100,000 cells	↑ Calcium propagation, gap junction-coupled to host astroglia, ↑ LTP; improved cognition functions (learning and memory)	Han et al. 2013 , Cell Stem Cell 12: 342-353

Human glial progenitor cells outcompete and ultimately replace resident mouse glial progenitor cells.

Human astrocytes are larger and more complex than rodent and other primates

Evolutionary changes in astrocytes contribute to higher cognitive functions in humans

Methods Mol Biol 2012, 814, 23-45.

Transplantations of AD astroprogenitors

Cells from AD PSEN1 donor transplanted

lambda

(-0.8, 2.0, -1.5; 0.5μl) (0.0, -1.0, -1.5; 1μl) 50,000 cells/0.5μl **hGFAP HuNu**

Koistinaho lab

hGFAP Dapi

Disparate phenotypes in AD iPSC-derived microglia

- Inflammatory responses are aggravated in cells with APOE4 genotype
- Metabolism, phagocytosis, and migration are decreased in APOE4 microglia-like cells
- > Familial mutations APPswe and PSEN1ΔE9 have only minor effects on functionality

Immunocompetent brain organoids

Microglia orchestrate neuronal activity in brain organoids

🔟 Ilkka Fagerlund, 🕩 Antonios Dougalis, 🕩 Anastasia Shakirzyanova, 🕩 Mireia Gómez-Budia,

D Henna Konttinen, Sohvi Ohtonen, D Fazaludeen Feroze, Marja Koskuvi, Johanna Kuusisto,

Damián Hernández, Alice Pebay, Dari Koistinaho, Darka Lehtonen, Paula Korhonen, Tarja Maln

doi: https://doi.org/10.1101/2020.12.08.416388

A population of Iba1+ cells in taking different morphologies

16

Incorporated microglia interact with synapses

PSD95+ post-synaptic material embedded within a pocket on the surface of an **Iba1+** cell

Syn1+ presynaptic material embedded within a pocket on the soma of **Iba1+** cell and partially internalised by process of the cell

Microglia empower neuronal maturation

(-)ORG (+)ORG 20 pA Electrophysiological traces of spontaneous 500 ms excitatory postsynaptic currents recorded under voltage clamp

Microglia drive neuronal bursting and network activity in (+)ORGs

spiking activity before and after NMDA perfusion Electrophysiological traces

from whole-cell recording

Summary

Development of human brain cell platforms for improved clinical translation

Astrocytes or microglia in 2D system:

- manifestation of disease pathology
- platform for drug trials

Brain organoids:

- complex cellular interactions
- modelling of brain networks
- immunocompetent (microglia)
- vascularization (endothelial cells)

3D co-cultures with neurons:

- mimicking in vivo complexity
- different functional behavior

Humanized models:

- studying contribution to the disease pathogenesis
- elucidate mechanism of neurodegenerative diseases

Summary

Thank you!

sarka.lehtonen@uef.fi

