Design of Controlled Clinical Trials

Prof. Stig Larsen

by

Centre for Epidemiology and Biostatistics, Norwegian School of Veterinary Science

Sample Size

- The probability of erroneously claiming difference between groups (Type I errors or significance level). {wanted as small as possible}
- The probability of detecting a real difference between groups. (Detection level or 1 Type II error). {wanted as large as possible}
- Clinical relevant difference. How large should a difference be in order to be of clinical interest?
- Optimalisation of study design.
- Degree of heterogeneity in the study population.
- Observation methodology.

Designs of CCT's

BETWEEN PATIENT DESIGNS Parallel group design Stratified design Factorial designs

WITHIN PATIENT DESIGNS

Latin Square design Semi cross- over design Greaco Latin square design Multi-cross-over design

Between patient designs

Advantage

Accepted by the authorities all over the world Will always give information

Disadvantage

Need a lot of patients

Might result in two or more groups which is not initially comparable

Predefined and standardized interventions and investigations

Cross-over design

The patients are equally allocated to one of two treatment sequences (A-B) or (B-A).

Greaco Latin Square Design

A-B-C B-C-A C-A-B

 A-B-C
 A-C-B

 B-C-A
 C-B-A

 C-A-B
 B-A-C

Multi cross over design

Combined MCO and Parallel group design

Within Patient Design

Advantage

Reduces the needed number of patients

Disadvantage

The patient needs to be in the same condition at the start of every period
The number of patients in each group has to be absolutely the same.
The duration of the study might be too long
A wash-out period between each intervention sequence is needed
Predefined and standardized interventions and investigations

Designs of CCT's

Adaptive designs Play-the-Winner design (PTW) Modified Play-the Winner design (MPTW) Randomized Play-the-Winner design (RPTW) Weighted Play-the-Winner design (WPTW)

> Sequential designs Triangular finite and infinite Trapezium finite and infinite

Response surface designs Binomial plain design Iteration design (within patients) Pathway design (between patients)

Play-the winner Design

W179 mori siluser eni to noisserqxE

Adaptive Design

Advantage

To be performed during the daily routine.
A controlling design, recording what happens in a real situation
The obtained study population will be close to the reference population
It is a family of design between Epidemiology and CCT

Disadvantage

Needs a large sample size

Not commonly accepted as a randomised controlled design

Triangular finite Sequential Design

Example of sequential design

Sequential Designs

Advantage

Reduces the needed number of patients

- **Discover during the trial if something unexpected or a dangerous** situation occurs
- **Stops the trial when the aim can be answered**
- **Can be combined with all kind of designs**

Disadvantage

Have to be statistically monitored during the study

- **Need special data software**
- **Isometry** Need more than a basic knowledge of statistics

Response surface design

Advantage

- **Can be used together with different other designs**
- **Increase the information by a given number of laboratory animals**
- Reduce the number of laboratory animals without loss of information
- The intervention is not prefixed but dependent on the results obtained at the last investigation
- **Makes the time for interventions and investigation stochastic**

Response surface design

Aim: Dose finding studies
 and Controlled clinical studies

Background situation

 With some prior knowledge
 Without or limited knowledge

Response surface design with iteration

In order to get similar power to that obtained by 16 animals in this design, 198 animals have to be included in a traditional design.

A general four level Response Surface Pathway Design

The response Pathway of Yessotoxin expressed with dose levels and proportion of dead mice

The proportion of dead mice with 95% confidence intervals at different dose levels in the two comparative designs.

Dose level (µg/kg.bw.	Response surface design	Evenly distributed dose levels	
)	Proportion of dead mice	Proportion of dead mice	
700		100,0 (66,4 - 100,0)	
600	77,8 (40,0 - 97,2)		
500	55,6 (21,2 - 86,3)	55,6 (18,0 - 94,7)	
450	44,4 (13,7 - 78,8)		
400	33,3 (7,5 – 70,1)		
300		0,0 (0,0 - 33,6)	
100		0,0 (0,0 - 33,6)	

The response Pathway of DTX-2 with semi-optimal (red) and optimal (blue) design expressed with doses and proportion of dead mice

The proportion of dead mice with 95% confidence intervals at different dose levels in the semi optimal and the optimal response surface pathway designs.

Dose level	Semi optimal design	Optimal design
(µg/kg.bw)	Proportion of dead mice	Proportion of dead mice
500	80,0 (28,4 – 99,5)	100,0 (29,2 – 100,0)
400	57,1 (18,4 – 90,1)	60,0 (14,7 - 94,7)
350	85,7 (42,1 – 99,6)	57,1 (18,4 – 90,1)
325	11,1 (0,3 – 48,3)	33,3 (7,5 – 70,1)

The five level response surface Pathway of DTX-2 with optimal design expressed with closes and proportion of dead mice

ciluzer io nozingquo0

Design	Dosed levels used (µg/kg bw	Number of dead mice	Number of mice used	Estimation of LD ₅₀ (μg/kg bw) with 95% confidence intervals in brackets
	500	4	5	
RSP _A -design	400	4	7	366
(Semi optimal)	350	6	7	(316 - 424)
	325	1	9	
	500	3	3	
RSP _B -design	400	3	5	355 (301 – 419)
(Optimal)	350	4	7	
	325	3	9	
Level 5	338	5	11	353 (310 - 402)

Basic change in dose levels

From Fixed to Stochastic observation time or dose levels

Number of dead mice	Level 2 (m ₂)	Level 3 (m ₃)	Level 4 (m ₄)	Level 5 (m ₅)
0	m _{1 +} m ₁ /k	m _{2 +} m ₁ /k ²	m _{3 +} m ₁ /k ³	m ₄₊ m ₁ /k ⁴
1	m _{1 +} m ₁ /k ²	m _{2 +} m ₁ /k ³	m _{3 +} m ₁ /k ⁴	m _{4 +} m ₁ /k ⁵
2	m _{1 -} m ₁ /k ²	m _{2 +} m ₁ /k ⁴	m _{3 +} m ₁ /k ⁵	m _{4 +} m ₁ /k ⁶
3	m _{1 -} m ₁ /k	m _{2 -} m ₁ /k ⁴	m _{3 +} m ₁ /k ⁶	m _{4 +} m ₁ /k ⁷
4		m _{2 -} m ₁ /k ³	m _{3 -} m ₁ /k ⁶	m _{4 +} m ₁ /k ⁸
5		m _{2 -} m ₁ /k ²	m _{3 -} m ₁ /k ⁵	m _{4 -} m ₁ /k ⁸
6			m _{3 -} m ₁ /k ⁴	m _{4 -} m ₁ /k ⁷
7			m _{3 -} m ₁ /k ³	m _{4 -} m ₁ /k ⁶
8				m _{4 -} m ₁ /k ⁵
9				m _{4 -} m ₁ /k ⁴

RSP design with stochastic interventions

Comparizon of fixed and stochastic dose steps

Design	Dosed levels used (µg/kg bw)	Number of dead mice	Number of mice used	Estimation of LD ₅₀ (µg/kg bw) with 95% confidence intervals in brackets
Four level RSP- design using a minimum number of mice and pre- fixed doses	400	1	3	446
	450	5	9	(345 – 577)
	500	4	7	
	600	4	5	
Four level RSP- design using a minimum number of mice and result-related doses	400	1	3	468
	469	4	9	(389 – 563)
	475	4	7	
	500	3	5	

Conclusions

The use of Response Surface Pathway design in CCT and Laboratory Animal Research will:

- 1. Increase the information from a given number of animals
- 2. Reduce the number of animals without loss of information to 1/3
- In order to optimize the design, the number of animals has to be reduced to a minimum at the first design level