

Harmonisation of the Care and Use of Agricultural Animals in Research

Application of the 3Rs to challenge tests used in vaccine development and quality control *(with a focus on Humane Endpoints)*

Coenraad Hendriksen,

Netherlands Vaccine Institute (NVI) &

Department Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University

Agenda

- What are challenge tests?
- Historical context
 - Vaccine production and quality control
- Three R opportunities
- Humane endpoints
 - * How to assess humane endpoints
 - * Organisational aspects of humane endpoints
 - * Dilemma's

Scope presentation

Challenge: to inject an experimental animal (immunized with a test substance) with disease micro-organisms to test for immunity to the disease

Focus is on vaccines, but with references to all experiments where animals are experimentally infected with a disease micro-organism

- in vaccine development and in vaccine batch release testing (safety, efficacy)
- □ in development of anti-inflammatory drugs and antibiotics
- **to study specific infectious diseases** (pathogenesis, clinical course, prevention, treatment)
- diagnostic testing
- a.o.

Challenge tests in the historical context

Poilly-le-Fort, France, 1881: Louis Pasteur: first reported challenge experiment. Five weeks after vaccination of 24 sheep and one goat with a live attenuated Anthrax vaccine, all animals and 29 control animals were challenged with a viruent strain of anthrax. All immunised animals survived while all nonvaccinated animals died.

Infection models in the historical context

Koch's Postulates (1884) : describe criteria to establish causal relationship between disease and micro-organism believed to be responsible

- Isolation of possible causal micro-organism from diseased person
- Pure culture of micro-organism on culture plate
- Injection of resulting pure culture into healthy and susceptible experimental animals : characteristic clinical signs in these animals
- Reisolation of the diseased host must be identical to the original micro-organism

Facts & Figures

	Animal use	Vaccines	Infections	
Total	575,278	96,678	66,037	
Horse	2,976	2,376	138	
Pig	10,516	3,645	1,353	
Sheep	3,021	213	50	
Cow	4,598	508	325	
Chicken	81,704	35,325	17,747	
Fish	29,417	60	700	
Mouse	285,215	36,264	39,733	
Rat	120,296	5,541	3,001	
Guinea pig	g 4,857	4,105	84	
Hamster	3,963	2,542	2,062	

Figures from the Netherlands, 2010

- Comments
- Animals are used in vaccine R&D, in preclinical testing and in batch quality control
- R&D and preclinical testing is performed once only, batch control routinely
- If possible, surrogate models (e.g. rodents) are used in all phases, apart for chicken and fish vaccines. Large farm animal use is restricted to (R&D), preclinical testing and safety testing

Statutory required

Reasons to promote Three R alternatives

Animal welfare concern: high pain & distress levels

- Legal: 'Animals have an intrinsic value...and should be treated as sentient creatures.' (Directive 2010/63/ EU, recital 12)
- Time cosuming and expensive
- Safety concern: virulent microorganisms in the animal lab.

Replacement and challenge procedures

Alternative approaches

Replacement

- Antigenicity testing
 - * NewCastle Disease (NCD) vaccine
- Consistency testing

Reduction and challenge procedures

Alternative approaches

Replacement

- Antigenicity testing
 - * NewCastle Disease (NCD) vaccine
- Consistency testing

Reduction

- Serological testing (no challenge)
 * Erysipelas vaccine
- Freeze drying challenge culture
- Reduction of dose groups
- Retesting policies
- etc.

Refinement and challenge procedures

Replacement

- Antigenicity testing
- Consistency testing

Reduction and Refinement

- Serological testing (no challenge)
- Freeze drying challenge culture
- Reduction of dose groups

Refinement

- Optimising housing conditions
- Providing pain relief??
- Humane endpoints

Humane endpoints: legal driver

Council Directive 2010/63/EU

Art.4.3: Member States shall ensure refinement of breeding, accommodation and care, and of methods used in procedures, eliminating or reducing to the minimum any possible pain, suffering, distress or lasting harm to the animals

Art.13.3: Death as an end-point of a procedure shall be avoided as far as possible and replaced by **early** and **humane end-points**.

Where death as the end-point is unavoidable, the procedure shall be designed so as to:

- a) result in the death of as few animals as possible; and
- b) reduce the duration an intensity of suffering to the animal to the minimum possible.

Humane endpoints

C

[•]The earliest indicator in an animal experiment of (potential) pain and/or distress that, within its scientific context and moral acceptability can be used to avoid or limit such consequences by taking actions such as humane killing or terminating or alleviating the pain and distress'

(Cost Manual of Laboratory Animal and Use, 2010)

Balancing scientific needs vs humane endpoints

Earlier, more humane endpoints should not distort experimental outcomes, thereby invalidating the experiment.On the other hand, however, pain and distress might be a confounding factor.

- Shifts to earlier endpoints can be validated by correlation with experimental biomarkers
- Seeking earlier endponts must be a dynamic process, involving all those having a responsibility in the experiment (PI, research staff, ethics committee, attending veterinarian, animal welfare body, technicians)

Ocular cancer cattle: skin carcinoma

Types of parameters for humane endpoints

Clinical signs :

depending on type of experiment; e.g. neurological signs, poor condition, paralysis, dehydration, cyanosis, etc.

Pathophysiological parameters : body temperature, body weight, respiratory rate, etc.

Behavior parameters : stereotypic behavior, agression, depression, etc.

Hormone levels : prolactine, corticosteroids.

Haematological and micro-biol. parameters : Hb, Hematocryte, IgG, leucocytes, virus titres, etc.

How to assess humane endpoints

Observation and monitoring

clinical signs, respiration, neurological signs, etc.

Biomarkers

- * blood, urine, saliva, tissue, tears, hair
- Microchip implant systems & Non-invasive technologies
 - * Telemetry (Temp., heart rate, blood pressure, etc.)
 - * Biophotonic imaging

Observation and monitoring

Vital assessments in observaton

Appearance

- Posture
- Spontaneous behavior
- Provoked behavior
- Clinical signs
- Body weight

When observing

Don't just look but observe!

- Start looking at the group (undisturbed behavior)
- Include the environment
- Know your animals and signals of good health
- Look and compare
- Be openminded

Use of a score sheet

Animal number	Day 1	Day 1	Day 2	Day 2	Day 3	Day 3	
Time:	X to XXX: from slight to severe						
Undisturbed observation: Condition Social interaction Ruffled feathers Neurological signs Posture & mobility		x x	x x xx x x x	xx x xx x x x xx	xxx xxx xxx xxx xx xx xx	+	
Response on handling Vocalisation Agression			x	xx xx	ххх		
<u>General clinical signs</u> Body weight Faeces/urine Etc.		x	x xxx	xx xxx	xxx xxx		

Alert criteria : criteria that should trigger frequent observation Decision criteria : criteria that should be used to apply humane endpoints

How to assess humane endpoints

Observation and monitoring

clinical signs, respiration, neurological signs, etc.

Biomarkers

- * blood, urine, saliva, tissue, tears, hair
- Microchip implant systems & Non-invasive technologies
 - * Telemetry (Temp., heart rate, blood pressure, etc.)
 - * Biophotonic imaging

Microchip implant systems & Noninvasive technologies

Possible parameters for humane endpoints

Temperature

- Activity
- Pressures (blood, ventricular, ocular, pleural,
- intra-cranial, etc.)
- ECG (heart rate, QT interval)
- EMG
- 🖌 EEG
- Blood flow

Pictures provided by TeleMetronics Biomedical

A basic TemPlant system contains a number of implants, a receiver, an antenna, and TempControl software on a PC. DEFINITION: The earliest indicator in an animal experiment of (potential) pain and/or distress that, within its scientific context and moral acceptability can be used to avoid or limit such consequences by taking actions such as humane killing or terminating or alleviating the pain and distress'

Euthanise the animal when relevant humane endpoints are reached

- Euthanise animal in case pain & ditress is not related to the experimental procedure
- Sedate the animal(s)
- Apply analgesics
- Stop the experimental procedures

Like most veterinary students, Doreen breezes through Chapter 9.

Organisational aspects of applying humane endpoints

Before the experiment

- Identify expected clinical progress, vital clinical signs and critical steps/time points (literature review/pilot study!)
- Identify type of parameter(s) to be used and what frequency of observations will be
- Discuss these with team (animal technicians, animal welfare off., pathologist)
- Define responsibilities of staff
- If needed, train staff

During the experiment

- Use score sheets
- Observe animals daily (more frequent when needed) and up-date score sheets
- Communicate on findings

After the experiment

- Include pathologist in evaluation
- If possible, modify parameters and criteria
- Publish information

Dilemma's in applying humane endpoints

- Observing the animals for 24 hrs/day?
- Dealing with investigators who want to have the maximum of information?
- □ Handling diseased animals and providing adequate housing?
- Sedate animals or provide analgesics to animals in pain?
- Killing or treating an animal?

Website Humane Endpoints

HUMANE ENDPOINTS in laboratory animal experimentation

MENU

Humane endpoints in laboratory animal experimentation A website on humane endpoints in rodent experiments

This website:

Home

- gives you guidance on how to apply humane endpoints
- includes a wealth of information on humane endpoints and related aspects, such as:
 o normal behaviour of rats and mice
 - o pain & distress
 - o clinical signs and pathology
- has an extensive data-base of video's and photographs of clinical signs as well as of relevant laws & regulations and of literature
- · learns you how to monitor welfare, identify endpoints and define responsibilities
- provides a platform/portal to discuss relevan issues with your colleagues
- has an interactive educational part for training purposes

In general, the website helps you to refine your experiments, for the welfare of the animals and also to improve scientific quality

LATEST NEWS

 <u>The US National Academies of Science has released its 2009 'Recognition and</u> <u>Allevation of Pain in Laboratory Animals' report</u>

www.humane-endpoints.info

~

Take home message

- Applying 3Rs in challenge models is not an option but a must
- Consider first Replacement. Reduction and refinement are second best
- Humane endpoints are the last resort of a 3R's approach
- Be aware of training needs
- Clearly define responsibilities
- Be a driver. Make use of new technologies

Thanks for your attention!