
Choosing the correct number of fish in laboratory and field experiments

> Stig Larsen (Prof. Contr. Clin. Trials) Norwegian School of Veterinary Science

Unethical situation

 The necessary number of subjects to be included in a study has to be calculated before start of trial

Factors influencing the sample size

- The probability of erroneousely claiming difference between groups (Type I errors or significance level). {Wanted as small as possible}
- The probability of detecting a real difference between groups. (Detection level or Type II error). {Wanted as large as possible}
- Clinical relevant difference. How large should a difference be in order to be of clinical interest?
- Optimalisation of study design.
- Degree of heterogeneity in the study population.

Observation methodology.

Specific influence of the factors

• Significance level [$p \le \alpha$]

 The probability of erroneously concluding changes whithin or differences between groups.

- Detection level β [Type II error = 1 β]
 - The probability to detect an actual change whithin or differences between groups.

- Clinical relevant difference $[\Delta = A \times \sigma]$

 The minimum change within or difference between group which is of clinical relevance to detect.

Patients as own control

 Sample size for different values of the significance level α, the detection level β and the clinical relevant difference Aσ

1010	А	1.00	0.95	0.90	0.85	0.80	0.75	0.70
	α=0.05 β=0.95	12	16	16	16	20	24	24
111	α=0.05 β=0.95	20	20	24	28	32	36	36
	α=0.05 β=0.95	20	20	24	28	28	32	36
	α=0.05 β=0.95	24	28	32	36	40	44	52

Comparison of groups

 The number of subjects to be included in each group in the parallel group designed trial related to different values of the significant level, the detection level and the clinically relevant difference.

		Clinically relevant difference = DT						
Significance	Detection	т 10ст	0.95т	0.9т	0.85т	0.8т	0.75т	0.7т
A1level	level		9.5cm	9cm	8.5cm	8cm	7.5cm	7ст
a=0.05	β=0.90	18	20	23	25	29	32	37
	β=0.95	23	26	28	32	36	41	47
	β=0.99	34	37	41	46	52	59	68
a=0.025	β=0.90	22	25	28	31	35	40	45
	β=0.95	28	31	34	38	43	49	56
	β=0.99	39	43	48	54	61	69	79
a=0.01	β=0.90	28	31	34	38	43	49	56
	β=0.95	34	34	41	46	52	59	68
	β=0.99	46	57	57	63	72	81	93

Comparison of design

Table: $a = 0.05 \beta = 0.95$

Type of	Clinical relevant difference (A)					
design	1	0.9	0.8	0.7		
Cross-over design	12	16	20	24		
Two-group design	46	54	70	92		

The influence of observation methodology

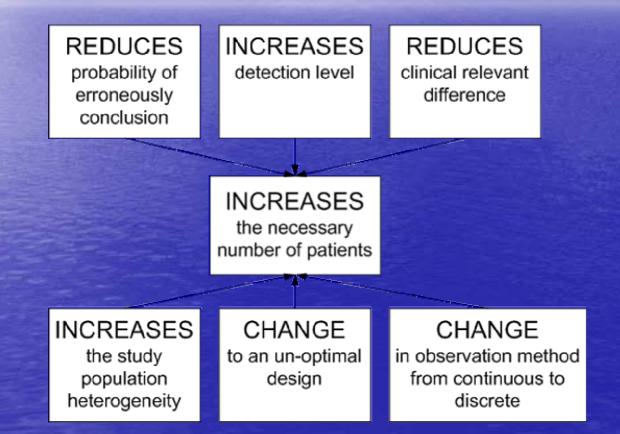
Binomial observation

Multinomial observation

Continuous observation
 Continuous var.

Discrete variable

Binomial situation


Occurence of event/symptom

 Fatal/not fatal outcome
 Healed/not healed outcome

Sample size in the binomial situation

	Clinic	Clinical relevant difference (A)					
	10%	20%	30%				
α = 0.05 β = 0.95	1068	256	106				
α = 0.05 β = 0.99	1556	370	152				
α = 0.10 β = 0.95	844	202	82				
α = 0.10 β = 0.99	1282	304	124				

Summary

Design overview

Parallell group design

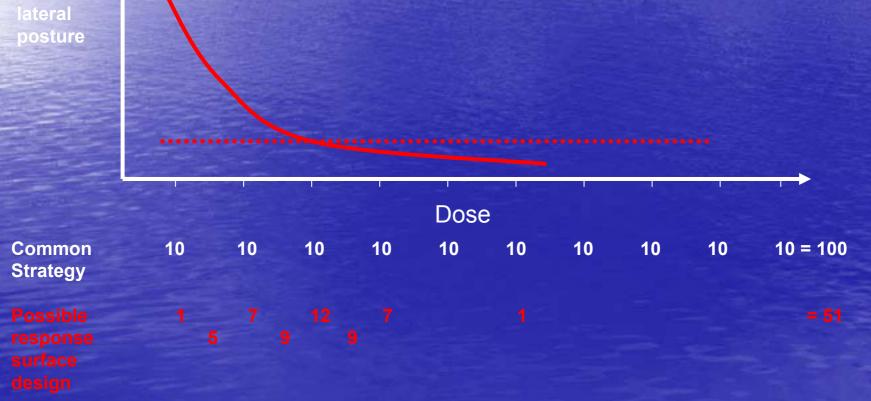
- Two group design
- Multiple group design
- Stratified design / Block design
- Factorial design
- Latin square design
 - Cross-over design
 - Semi-cross over design
 - Greako latin square design
- Multi cross-over design
- Adaptive design
 - Play-The-Winner (PTW)
 - Modified Play-The-Winner (MPTW)
 - Randomizied Play-The-Winner (RPTW)
 - Weighted Play-The-Winner (WPTW)
- Sequential design
- Response suface design

Responce surface design

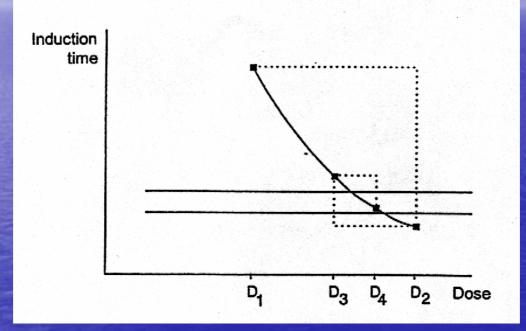
Aim: Dose finding studies

Background situation

 With some *a priori* knowledge
 Without or limited knowledge

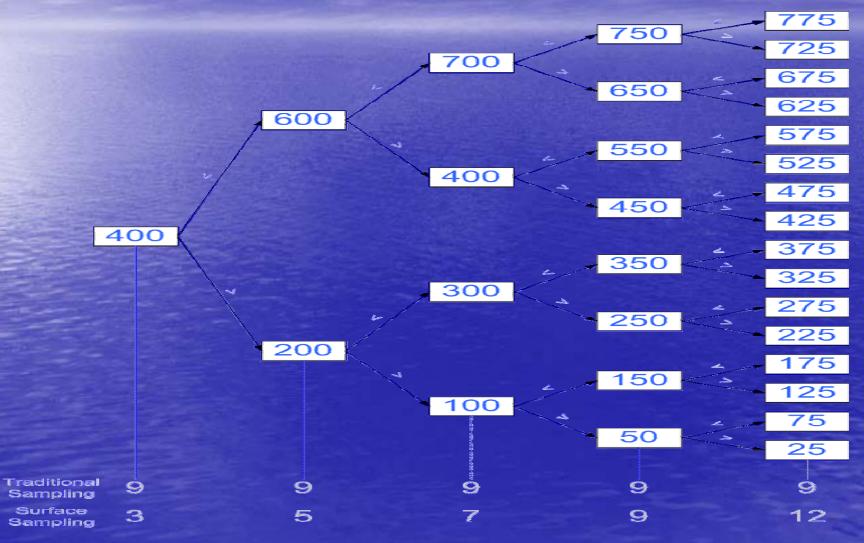

Dose-finding studies Example: Immobilization of fish

Time to lateral posture



Dose-finding studies Example: Immobilization of fish

Time to



Response surface design with iteration

 In order to get similar power as obtained by 16 fish in this design, 198 fish have to be included in a traditional design.

Response surface design with pathway procedure

Conclustion

 In order to reduce the number of fish used in both field and laboratory experiments, it is crucial to:

Choose an optimal study design
Optimize the information from each included fish