

Microsurgery training for 3R

3R in microsurgery training

PROFESSOR MICHAEL AXELSSON

Department of Biological and Environmental Sciences, Box 463, SE-405 30 Gothenburg, Sweden

Phone: +46 31-786 3689, Mobile: +46766-183689 E-mail: michael.axelsson@gu.se Web: http://www.bioenv.gu.se/personal/Axelsson_Michael/

Scandinavian Microsurgery Academy

Started in 2013 as a collaboration between

http://microsurgery.se/

The team behind (in alphabetic order)

- **Michael Axelsson**, Professor, Dept. of Biological and Environmental Sciences, University of Gothenburg.
- **Peter Axelsson**, MD. Senior consultant at the department of Hand- and Plastic surgery. Sahlgrenska University hospital, Gothenburg
- Johan Berg, MD. Hand surgery unit, Sahlgrenska University Hospital, Gothenburg
- Lars Ewaldsson, DVM, PhD. Laboratory for Experimental Biomedicine, University of Gothenburg
- Mats Hellström, MSc, PhD. Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg.
- **Mihai Oltean**, MD, PhD. The Transplant Institute. Sahlgrenska University Hospital, Gothenburg.
- Anders G. Nilsson, MD, PhD, Hand surgeon, Hand surgery unit, Sahlgrenska University Hospital, Gothenburg
- Mattias Liden, MD, PhD. Head of Plastic Surgery Clinic, Department of Hand and Plastic Surgery. Sahlgrenska University Hospital, Gothenburg.
- **Paolo Sassu**, MD, PhD. Coordinator of the Hand Transplant Program, Sahlgrenska University Hospital, Gothenburg.
- Andri Thorarinsson, MD. Head of Center for Microsurgery, Department of Hand and Plastic Surgery, Sahlgrenska University Hospital, Gothenburg.

Guest lecturers and inspirators

Norbert Nemeth, M.D., Ph.D, Department of Operative Techniques and Surgical Research, University of Debrecen, Hungary

Roberto Puxeddu, Associate professor, Department of Otorhinolaryngology, University of Cagliari, Italy

Markus Spingler, President & CEO ,S&T AG, Zollstrasse 91, CH-8212 Neuhausen, Switzerland

Myers, Simon, Professor, Centre for Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Blizard Building, United Kingdom

Ghanem, Ali, MD PhD, Centre for Cutaneous Research, Blizard Institute – Barts and The London School of Medicine, United Kingdom

Antonio di Cataldo, Professor, General Surgery, Faculty of Medicine and Surgery,

University of Catania, Catania, Italy

GOTHENBURG

Mihai Ionac, Division of Vascular Surgery and Reconstructive Microsurgery, Clinic of Vascular Surgery, Victor Babes University, Timisoara, Romania.

Andres Rodrigues-Lorenzo, Consultant In Plastic Surgery, Director of Microsurgery at Akademiska Hospital, Uppsala, Sweden

Ron de Bruin, Associate Professor, Erasmus Medical Center, Erasmus University Rotterdam, The Netherlands

Mikael Wiberg, Consultant in hand surgery and plastic surgery, Norrlands University Hospital, Umeå, Sweden

Aleksandra McGrath, MD, PhD. Dept of Hand Surgery University of Umeå **Martin Halle**, MD, PhD. Dept of Plastic Surgery, Karolinska Institute, Sweden **Birgit Ewaldsson**, DVM, PhD., AstraZeneca, Sweden

Microsurgery training for 3R

The use of surgical procedures in rodents is increasing in biomedical research, legislation both within in EU and other countries stipulates that personnel should have adequate training to perform these procedures.

Surgical training will lead to refinement for the animals in experiments (**REFINMENT**) and high quality, standardized training will contribute to improved data that can reduce the number of animals used in experiments (**REDUCTION**)

3R in microsurgery training"

In the case of experimental microsurgery training a full replacement of animals is implausible but a carefully designed course curriculum can lead to a reduction of the animals used in training.

Innante models used:

- Ropes
- Bananas
- Woven compresses
- 3D printed version of Sun-Lee rings
- Chicken thigh

Ergonomy improvments (impacts the outcome):

- Bean bags
- Handles for short (11cm and cheaper) microforceps

Evaluations tools:

- 3D printed version of Sun-Lee rings
- Micro-TRACK

Two courses

Experimental microsurgery

Microsurgical techniques

10 courses completed

10 courses completed

Experimental microsurgery – preclinical personnel

Basic surgical training in non-living models, day 1 and 2 Basic knotting, rope training, surgical knot with variations	Day 1
Instruments suturing using banana peels Woven compress, hand – eye coordination under the microscope Sun-Lee discs- latex membrane, suturing under microscope Chicken thigh, tissue dissection and vessel anastomosis	Day 2
Animal work, day 3-5	Day 3
Cannulation of neck vessels in rats, Jugular and carotid artery Groin Dissection & Cannulation, Femoral artery, vein and nerve Femoral anastomosis Abdominal opening/closing, dissection of abdominal aorta	Day 4
	Day 5

Microsurgical techniques – clinically active surgeons

Microsurgical training on non-living model, day 1 Day 1 Sun-Lee rings - latex membrane, suturing under microscope Chicken thigh, tissue dissection and vessel anastomosis Day 2 Microsurgical training, day 2-5 End-to-end anastomosis of femoral artery End-to-end anastomosis of carotid artery Day 3 End-to-end anastomosis of femoral vein End-to-side anastomosis of femoral artery-vein Nerve suturing, sciatic nerve Day 4 Vein grafts on either artery or vein Day 5

The reef knot and surgical knot basics Bean bags and two-colored rope

First instrument suturing Banana peel is useful

Sun-Lee disk in a modern 3D printed design Suturing in latex membrane

SUN LEE, MD, and WARD J. COPPERSMITH, BS MICROSURGERY 4~67-69 1983

The ergonomy affects the outcome Cheap forceps improved

S&T balanced, FRS-15 RM-8 costs around 400 EU Dumond, model 5H costs around 40 EU 3D printed reusable handle, Spaceclaim 3D Modeling Software

Evaluation of skills aquisition

Sun-Lee disk, based on Queen Mary University London Microsurgery Global Rating Scale (QMUL Micro GRS)

Evaluation of skills aquisition Micro-TRACK

Three 9-axis sensors per hand plus video capture

Sensor Bosch - BNO055

triaxial 16bit gyroscope triaxial 14bit accelerometer Triaxial geomagnetic sensor

T	2	8	D		0	и	м	1	3	i.	1	н	ō.			d	0	1	A	
wat dourf	aR dmurt	humb Pitch	rsA dmud	ToA dmurt	ToA down	weitnegel	inger Rolf	riger Pitch	R to A to P	inger As Fi	Finger Act F	we'l brief	BoR brist	iand Prici I	C 30A bre	H' 30A bris	H: 30A brief	RigtlyLeft	W Measure	â
bet	be	the back back and date	SARA	Ver2	a Shala	bi	the be	n be	1 518	Vm Shala	5/8/1	ber	be	t be	5 nev	a SheV	H Chala		These be	ą
ACC CCC CCC CCC 000	ACCEP,D	1.89 800 800 800 EEL-	10/0-	10.0	10,0	Taa aaa aaa aaa aaa 240	10.0	SEE CEE LEE CEE OIL-	01,0	10,0-	10.0	00,C	TITLES,0	CCC80.0-	81,0	10	200	modelin 11	SHEEDE,0	÷
22 222 222 222 222 808	02218-0-	733 666 666 666 667	50.0-	20.0	30.0	743 666 666 665 667	10.0	LEE CEL CEL CEL CEL OIL-	at.0	80.0	80.0	30.2	111100.0	EEEBO.D-	0.21	11.0-	80.0-	maadala Sta	- Soccoc, a	
406 555 555 555 55	0.41556	111 666 666 666 667	-0.05	80.0-	10.0	245 666 666 666 667	10.0		0.06	-0.05	1.0-	5.06	0.091111	0.08333	0.22	1.0-	10.0-	miAntain 12	300200.0	
406 555 555 555 55	-0,41556	-133 666 666 666 667	-0,09	-0,06	0,05	245 666 666 666 667	0,01		0.14	e0,0-	80,0-	5,06	111100,0	0,08333	85.0	60,0-	49,0-	mAstgiR 11	6,363366+	
406 333 533 553 35	-0,41556	-111 668 666 668 667	10,0-	-0,05	TD,0	245 666 666 665 667	0,01		80,0	-0,05	80,0-	3,06	0,091111	6668333	0.19	11.0-	T0.0-	17 RightArm	6,363367	
406 555 555 555 51	-0,415556	-133666666666667	-0,11	-0,05	80,0	245 666 666 666 667	0,01	-220 233 233 233 233 333	80,0	00,0-	1.0-	5,06	0,091111	-0,06333	0,31	-0,22	1,0-	17 RightArm	6,361366	
0,337777772	111104,0-	0,19	-0,07	0,16	10,0	415 666 666 666 667	0,10778	244 888 888 888 889 142	50,0-	-0,02	80,0	0,205556	0,127778	80,0	-0,07	0,01	11,0-	17 LeftArm	5,3653567	
0,333777777	0,46333	0,191111111	0	0,16	•	415 666 666 666 667	0,30778	244 888 888 888 889	11.0	-0,02	0,07	0,205556	0,127778	0,08	0	0,02	11.0-	17 LeftArm	·385286.0	4
CC CCC CCC CCC 808	ELEMA D.	1111000 000 000 111-	10.0	51.0	au	Tab 888 888 888 778	10,0	PER DER DER DER DER	80.0	60,0-	100	40,6 azzánc n	MITTELO	80.0	0.28	100	10,0-	mutite 171	- solital a	
22 222 222 222 222 204	32212.0	133 333 333 333 533 511	20.0	PD.0.	80.0	Tan ann ann ann 240	10.0	111 125 135 155 155 005	10.0	20.0	80.0-	30.7	trrppo.o	11110	10.0	1.0-	10.0	magazie Cr	- MING	
0,33777777	£££84,0-	0,191111111	60,0-	0,17	0	415 666 566 665 967	-0,30778	144 888 888 888 442	-0.03	60,0	0,06	0,205556	0,127776	80,0	50.0	20,0	11.0-	+17 LeftArm	536(346.8	
406 333 555 555 555	-0,413556	-111 000 000 000 001	-0,07	80,0-	80,0	245 866 666 666 667	10,0	EEE EEE EEE EEE OLL-	0,16	80.0-	80,0-	30,8	0,091111	62280.0-	66,0	1,0-	e0,0-	177 RightArm	6,363366+	
406 555 555 555 55	-0,41556	111 006 006 006 067	60,03	-0,07	0,05	245 666 666 666 667	0,01	EEE 668 668 668 028-	0,15	-0,05	2,0-	5,06	111160,0	0,08333	0,18	-0,12	60,0-	mukartyuk tize	-30(201,0	
0,13777777	6,66333	111111101.0	AQ,0A	0,17	20,0	415 666 666 666 667	0,30778	144 888 888 888 889	-0,13	-0,02	0,07	0.205556	0,127778	80,0	0,07	\$0,02	1,0-	47 LeftArm	-3000000	
406 355 555 555 555 5	-0,41556	-111 000 000 000 007	60,0-	80,0-	-80,0	245 666 666 666 667	0,01	222 223 333 333 333 333 333	80,0	-0,05	60,0-	3,06	0,091111	6,06333	18,0	6,0-	10,0-	mskartyck 12	6,363366+	
7000 6000 5000																				
4000																				
3000								_												
2000								_												
1000																				
0																				

Mads, Movement Estimation Left (fine) - LeftArm:

Mads, Movement Estimation Right (fine) - RightArm:

Mats, Movement Estimation Left (fine) - LeftArm:

Mats, Movement Estimation Right (fine) - RightArm:

Summary

Practical training is not only mandatory for everybody working with research animals after 2013 with EU (Directive 2010/63/EU) and in many other countries **BUT** it also lead to **REFINMENT** and **REDUCTION**

A well structured course curriculum using innate training tools before the introduction of live animals will lead to **REDUCTION**

It is important to apply skills evaluation protocol and grade the participants based on their skill level at the end of the course according to Article 23 of the Directive 2010/63/EU.