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1966-1981  Geneticist, MRC Laboratory animals centre

Michael FW Festing, Ph.D., D.Sc, Cstat

Aim of the LAC: To supply high quality, disease-free 
breeding stock to research workers and commercial 
breeders.
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Some personal research: Mandible shape 
for genetic quality control  c1970s



Some personal research: Strain differences in 
escape time in a water maze



Some personal research: 
Exercise in a running wheel

5
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q Replacement
q e.g. in-vitro methods, less sentient animals

q Refinement
q e.g. anaesthesia and analgesia, environmental 

enrichment
q Reduction

q Research strategy
q Shotgun vs Fundamental

q Controlling variability
q Genetics, appropriate model
q (disease)

q Experimental design and statistics

The design and statistical analysis of 
experiments involving laboratory animals

Principles of Humane Experimental Technique
Russell and Burch 1959

FRAME



Concern about the quality of animal 
research expressed in 1992

Outlined the principles of good experimental design and did a
small survey of published papers (mostly toxicology)

1. Few used randomised block designs even though this is the most 
common design in agricultural and industrial research. 

2. Factorial designs rare although they provide extra information at no 
extra cost

Festing, M. F. W. "The scope for improving the design of laboratory animal experiments." 
Laboratory Animals 26 (1992): 256-67.

Won first prize in a GV-SOLAS competition for the best published or unpublished paper on 
laboratory animal science
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A meta-analysis of 44 randomised controlled animal 
studies of fluid resuscitation

l Only 2 said how animals had been allocated
l None had sufficient power to detect reliably a halving 

in risk of death
l Substantial scope for bias
l Substantial heterogeneity in results, due to method of 

inducing the bleeding
l Odds ratios impossible to interpret
l Authors queried whether these animal experiments 

made any contribution to human medicine

Roberts et al 2002, BMJ 324:474

Concern about the quality of animal 
research
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Six meta-analyses showing poor agreement 
between animal and human responses, 2007

Intervention Human results Animal results (meta-
analysis)

Agree?

Corticosteroids for 
head injury

No improvement Improved nurological 
outcome
n=17

No

Antofibrinolytics for 
surgery

Reduces blood loss Too little good quality data
n=8

No

Thrombolysis with 
TPA for acute 
ischaemic stroke

Reduces death Reduces death but 
publication bias and 
overstatement (n=113)

Yes

Tirilazad for stroke Increases risk of death Reduced infarct volume and 
improved behavioural score 
n=18

No

Corticosteroids for 
premature birth

Reduces mortality Reduces mortality n=56 Yes

Bisphosphonates 
for osteoperosis

Increase bone density Increase bone density n=16 Yes

Perel et al (2007) BMJ 334:197-200



Funnel plots and publication 
bias

10

Funnel plot demonstrating possible but not statistically significant 
publication bias in assessment of pain (P > 0.05). -Dashed diagonal lines 
indicate 95% CI

J Ther Ultrasound. 2017 Apr 1;5:9. doi: 10.1186/s40349-017-0080-4. eCollection 2017.
A meta-analysis of palliative treatment of pancreatic cancer with high intensity focused ultrasound.
Dababou S1, Marrocchio C1, Rosenberg J2, Bitton R2, Pauly KB2, Napoli A3, Hwang JH4, Ghanouni P2.

Large powerful 
studies

small positive studiessmall negative studies

Each dot is one 
experiment.
Small negatives 
have remained 
unpublished.

https://www.ncbi.nlm.nih.gov/pubmed/28373906
https://www.ncbi.nlm.nih.gov/pubmed/?term=Dababou%20S%5BAuthor%5D&cauthor=true&cauthor_uid=28373906
https://www.ncbi.nlm.nih.gov/pubmed/?term=Marrocchio%20C%5BAuthor%5D&cauthor=true&cauthor_uid=28373906
https://www.ncbi.nlm.nih.gov/pubmed/?term=Rosenberg%20J%5BAuthor%5D&cauthor=true&cauthor_uid=28373906
https://www.ncbi.nlm.nih.gov/pubmed/?term=Bitton%20R%5BAuthor%5D&cauthor=true&cauthor_uid=28373906
https://www.ncbi.nlm.nih.gov/pubmed/?term=Pauly%20KB%5BAuthor%5D&cauthor=true&cauthor_uid=28373906
https://www.ncbi.nlm.nih.gov/pubmed/?term=Napoli%20A%5BAuthor%5D&cauthor=true&cauthor_uid=28373906
https://www.ncbi.nlm.nih.gov/pubmed/?term=Hwang%20JH%5BAuthor%5D&cauthor=true&cauthor_uid=28373906
https://www.ncbi.nlm.nih.gov/pubmed/?term=Ghanouni%20P%5BAuthor%5D&cauthor=true&cauthor_uid=28373906


Survey of a random sample of 271 published papers using laboratory animals

Of the papers studied:
l 87% did not report random allocation  of subjects to treatments
l 86% did not report “blinding” where it seemed to be appropriate
l 100%  failed to justify the sample sizes used
l 5%   did not clearly state the purpose of the study 
l 6%   did not indicate how many separate experiments were done
l 13% did not identify the experimental unit 
l 26% failed to state the sex of the animals
l 24% reported neither age not weight of animals
l 4%   did not mention the number of animals used
l 35% which reported numbers used these differed in the materials 

and methods and the results sections
l etc.

11Kilkenny et al (2009), PLoS One Vol. 4, e7824

Problems with published papers



A crisis in pre-clinical
biomedical 
research

Ben Goldacre (2012)
Bad Pharma: How drug 

companies mislead 

doctors and harm patients

2010

2012

2012

2012

2012

2012

2015



SOD1G93A: The standard model 
for FALS and ALS

l >50 papers describing therapeutic agents which extend lifespan in 
mice

l Only one (riluzole) has any clinical effect
l Scott et al:

l Confounding factors (gender, litter, censoring, copy number) identified & 
controlled. 

l Power analysis used to determine an appropriate sample size
l 70 compounds subsequently tested. None (including riluzole) increased survival.

l “The majority of published effects are most likely measurements of 
noise in the distribution of survival means as opposed to actual drug 
effects.”

Scott et al (2008) Amyotrophic Lateral Sclerosis 9:4-15



Cost of irreproducible pre-clinical 
research in the USA alone
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US$28,000,000,000 per annum  (US$28 billion)

Freedman et al (2015)



Some possible causes of lack of 
repeatability (false positives)
l Bias: incorrect or no randomisation/blinding (Due to use of the 

“Completely randmized” experimental design).
l Pseudo-replication: failure to identify the experimental unit correctly 

with over-estimation of “n” (e.g. animals/cage)
l Wrong animals (large species/strain differences in mice and rats)
l Failure to repeat or build in repetition (e.g. using randomised block 

designs). (In-vitro experiments “repeat the experiment 3 times”)
l Under-powered. Negative results remain unpublished. Excessive 

false positives due to the 5% significance level
l Technical errors. E.g. wrong monoclonal Abs.
l Statistical errors. E.g. assumptions invalid when doing parametric 

tests
l Fraud

15



Positive results in studies of endocrine disruption by bisphenol A.

94/104 = 90%  Government funded
0/11     = 0%     Industry funded

Frederick S. vom Saal and Claude Hughes.
Environ Health Perspect 113:926–933 (2005)

Clear evidence of conflicts of 
interest impacting results



The father of the randomised, 
controlled experiment

Sir Ronald Aylmer Fisher FRS                 
(1890 – 1962), who published as R. A. 
Fisher, was an English statistician, and 
biologist, who used mathematics to 
combine Mendelian genetics and natural 
selection,... wikipedia.org

“To consult the statistician after an experiment is finished is often merely to ask 
him to conduct a post mortem examination. He can perhaps say what the 
experiment died of.”

http://en.wikipedia.org/wiki/Ronald_Fisher


The randomised controlled 
experiment: basic principles
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Developed at the Rothamsted Experimental Station in  the 1920s, 
largely by RA Fisher.

1. Replication

2. Randomization                                                 A “completely                      
randomized design

3. Blocking                      1                 2                    3      A Randomized                 
block design

.

Sample size =3



Basic designs: Completely randomised 
and randomised block experiments
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There can be any number of treatments (3 here).  “Treatment” is a fixed effect factor

A completely randomised design

Block 1        Block 2            Block 3        Block 4
Each block is randomised separately.
It has two factors “Treatment” (fixed effect) 
and “Block” (random effect).

The statistical analysis is a 2-way ANOVA 
without interaction.

Source      DF
Blocks        3
Treatment   2
Error           6
Total          11

A randomised block design

Each block has a single subject on each 
treatment.
Blocks can be separated in space and time. 
Animals within a block should be matched

First in theory, then real examples

This has one fixed effect factor “treatment” (three 
treatments)
Statistical analysis is a one-way ANOVA

ANOVA
Source      DF      SS       MS       F        P
Treatment   2
Error           9
Total         11



The research environment
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Other issues to be considered are 
in-house transport, 
Environmental effects of cage location, 
The physical environment inside the cage (wet/dry), 
The acoustic environment audible to animals, 
The olfactory environment, materials in the cage, cage complexity, feeding 
regimens, kinship and interaction with humans.”

Barometric pressure
Lunar cycle?
Nevalainen T. Animal husbandry and experimental design. ILAR J 
2014;55(3):392-8.

“Our lives and the lives of animals are governed by cycles,
Seasons, 
reproductive cycle, weekend-working days, 
cage change/room sanitation cycle, 
and the diurnal rhythm. 

Some of these may be attributable to routine husbandry, 
the rest are cycles, which may be affected by husbandry procedures. 



The randomized block design
l More powerful (better control of the research 

environment)
l More convenient. 

l Work spread over time
l Less subject to bias

l Separate randomizations for each block
l Discourages use of historical controls or adding on of additional 

treatment groups post-hoc

l Makes good use of heterogeneous material
l Animals within a block matched

21
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Factorial designs
(By using a factorial design)”.... an experimental 
investigation, at the same time as it is made more 
comprehensive, may also be made more efficient if 
by more efficient we mean that more knowledge and 
a higher degree of precision are obtainable by the 
same number of observations.”   

R.A. Fisher, 1960

“..we should, in designing the experiment, artificially 
vary conditions if we can do so without inflating the 
error.

Cox, DR 1958



Basic designs: Completely randomised and 
randomosed block 2x4 factorial experiments
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A completely randomised “Factorial” design with four 

treatments and two “genders, (male tall) and females 

(short), all fixed effects

ANOVA  2-way with interaction

Source             DF

Treatment (T)   3

Gender      (G)  1

TxG 3

Error                  8

Total                15

Block 1                         Block 2    

A 4 (treatments)x2 (genders) factorial design 

(fixed effects) in two blocks (random effects).

Analysis 3-way ANOVA with two fixed and 

one random factor (the blocks).

Source         DF

Blocks           1

Treatments    3

Gender          1

TxG 3

Error               7

Total             15

2 genders (tall/short) x 4 treatments 

(black, blue, brown, red)

Each block has a single representative of 

each gender and treatment



Randomisation, the p-value and the significance 
level: the basis of statistical testing (RA Fisher 
and the tea tasting experiment)
A lady claims that she can tell whether the milk is put in the cup before or 
after the tea. An experiment is set up to test this. Eight cups of tea are 
prepared, with four  TM and four MT. They will be presented to the lady in 
random order and she will indicate which type they are.

Number of ways of choosing four cups out of eight cups =
!!

#! !$# ! = 1680/24 = 70.  Only 1/70 is right, so if she does it correctly p=0.014

A 5% significance level is often chosen for making a decision to accept the 
results as not due to chance, but this is entirely arbitrary.

P-value. Probability of getting a result as extreme as, or more extreme than the 
observed one in the absence of a true effect

24



NHST (null hypothesis significance 

testing) has some critics
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Recently the editors of Basic and Applied Social 
Psychology (BASP) announced that the journal would no 
longer publish papers containing P values because the 
statistics were too often used to support lower-quality 
research.

Original Articles
Life After NHST: How to Describe Your Data Without “p-ing” 

Everywhere

Jeffrey C. Valentine, Ariel M. Aloe & Timothy S. Lau
Pages 260-273 | Published online: 04 Aug 2015

http://www.tandfonline.com/toc/hbas20/current
http://www.tandfonline.com/author/Valentine,+Jeffrey+C
http://www.tandfonline.com/author/Aloe,+Ariel+M
http://www.tandfonline.com/author/Lau,+Timothy+S


The “standardised effect size”, 
SES, or Cohen’s d
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d=  ES/SDp

d=0.2       d=0.5          d=0.8         d=1.0              d=2.0
Small       Medium       Large        Extra large     Gigantic

N/gp.      525           85                  32              22                 6

ES    SD     ES   SD      ES  SD       ES  SD      

Laboratory animalsClinical trials

ES

SD

A measure of the magnitude of a difference between means in units 
of standard deviations. A partial replacement of NHST?

Effect size= response in standard deviation units

Example: Mean treated=3.30, mean control =1.55 , diff=  1.75.  SD= 0.89
So d=1.75/0.89=1.96 SDs



Use of SESs in describing results of toxicity tests. 
All results converted from original units to SESs.

27

Michael Festing
DOI: 10.1177/0192623313517771
Toxicol Pathol published online 31 January 2014



Highlight the most changed 
biomarkers of toxicity

28
Michael Festing
DOI: 10.1177/0192623313517771
Toxicol Pathol published online 31 January 2014



Use of SES to study toxicity of 
GM crops in rats
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Michael Festing
DOI: 10.1177/0192623313517771
Toxicol Pathol published online 31 
January 2014

This study has produced 
380 differences between 
hematology, clinical 
biochemistry and organ 
weights in animals fed on 
GM corn and non GM corn. 
When plotted on a normal 
probability plot they are 
normally distributed. No 
evidence of toxicity.
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Three types of experiment
l Pilot study

l Logistics and preliminary information

l Exploratory experiment

l Aim is to provide data to generate hypotheses

l May “work” or “not work”

l Often many outcomes 

l Statistical analysis may be problematical (many characters 
measured, data snooping). p-values may not be correct

l “The Texas sharp-shooter problem”

l Confirmatory experiment (Gold standard)
l Formal hypothesis stated a priori. Randomised controlled 

experiment.

l Various designs including “completely randomised” and 
“randomised block” designs.
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A well designed confirmatory 
experiment

l Clearly stated objectives
l Absence of bias

l Experimental unit, randomisation, blinding
l High power

l Low noise (uniform material, blocking, covariance)
l High signal (sensitive subjects, high dose)
l Large sample size 

l Wide range of applicability
l Replicate over other factors (e.g. sex, strain):            

factorial designs
l Simplicity
l Amenable to a statistical analysis

l Planned with the design

Internal 
validity

External 
validity



Real Example 1.
A completely randomised 
(CR) design
Purpose of the study:
Do MCA and Urethane increase micronuclei in 
the peripheral blood of BALB/c female mice.

12 mice per group. 
Treatments were assigned to mice at random. 
Micronuclei were counted blind using the laser 
scanning cytometer.

------------
Problems with a CR design:
1. May not be possible to obtain large numbers 

of animals of uniform weight, age etc.
2. May not be able to house them them in a 

uniform environment
3. May not be able to measure them in a 

uniform environment

So, inter-individual variability may be increased,  
and  power decreased, because: SD increased.

However, the design is simple and is widely 
used.

Animal Treatment
1 Urethane
2 Control
3 Control
4 MCA
5 MCA
6 Urethane
7 Control
8 Urethane
9 MCA
10 MCA
11 Control
12 Control
13 Urethane
14 Urethane
15 MCA
16 Control
17 MCA
18 MCA
19 Urethane
20 MCA
21 MCA
22 Control
23 Urethane
24 Control
25 Control
26 Control
27 MCA
28 Control
29 Urethane
30 MCA
31 Urethane
32 Control
33 Urethane
34 MCA
35 Urethane
36 Urethane

Count
3.48
1.9
1.23
1.26
2.34
5.39    *
2.06
2.34
1.55
2.26
1.87
0.66
3.85
1.57
2.00
2.15
2.13
2.27
3.56
1.98
1.76
1.22
6.10    *
1.59
1.88
2.23
1.87
0.33
2.15
0.83
2.81
1.48
2.9
0.75
2.49
3.04



Statistical analysis
Plot individual points

Control MCA Urethane

1
2

3
4

5
6

C
ou
nt

“jitter” added so 
points separated 
horizontally

ANOVA 
assumptions:
1. Equal variances
2. Residuals have 
normal distribution
3. Independent 
experimental units.

What about the two 
outliers?
(do they make a 
difference to the 
conclusions?)



A trial ANOVA (to look at 
residuals) 

Source Df SS MS F P
Treatment 2 22.196 11.0982 13.997 <0.001
Residuals 33 26.165 0.7929
Total 35 48.361

Pooled sd= sqrt(.7929) = 0.890 Pooled variance



Residuals diagnostic plots
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Factor Level Combinations
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Control MCA Urethane
Treatment :

Constant Leverage:
 Residuals vs Factor Levels

23

6

14

aov(Count ~ Treatment)

Assumptions for a 
parametric analysis:

1. Normal distribution 
of residuals

2. Homogeneous 
variances

3. Observations are 
independent (part of 
the design)

Should be a 
scattering of points 
with no pattern

Points should 
fall on a straight 
line



Means and standard 
deviations

Treat.  mean   sd n   Post-hoc comparisons*   
Control     1.55  0.596     12     a
MCA         1.75  0.546     12     a
Urethane    3.30  1.313     12     b

Pooled sd = 0.89 (from sqrt EMS in ANOVA)

Standardised effect sizes/Cohen’s d: 

d (SES)= (Diff. between means)/pooled SD)

SES:    MCA = (1.75-1.55)/0.89 =  0.22
Urethane= (3.30-1.55)/0.89=  1.96

*post-hoc comparisons done 
using Tukey’s test

Note: I have been 
inconsistent & used 
SES and Cohen’s d for 
the same thing
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Example 2. A randomised block experiment

0
50
100
150
200
250
300
350
400
450
500

1 2 3

Week

Ap
op

to
si

s 
sc

or
e

Control
CGP
STAU

365   398   421               423  432    459               308    320  329 

Do “CPG and STAU increase apoptosis in rat thymocytes?
Experimental unit is a dish of thymocytes



Advantages of randomised 
block designs

l If blocked in time, provides some assurance of repeatability
l In-vitro experiments often say “We repeated the experiment three times”

l More powerful than CR design. Better control of variation.
Two animals treated at same time and housed in adjacent cages likely to be 
more similar than two treated at different times and housed on different 
shelves. 

l More convenient: can be done a bit at a time
l Less susceptible to faulty randomisation

l Disadvantages:
l Not so good with several missing observations /unequal sample sizes (a 

few tolerated)
l Requires a 2-way ANOVA without interaction

38



ANOVA (MINITAB)
Week    random       3  1, 2, 3
Drug    fixed        3  C, CGP, STAU

Analysis of Variance for apop

Source  DF       SS       MS       F      P
Week     2  21764.2  10882.1  114.82  0.000
Drug     2   2129.6   1064.8   11.23  0.023
Error    4    379.1     94.8
Total    8  24272.9

S = 9.73539   R-Sq = 98.44%   

39

An estimate of the 
pooled variance



Residuals plots (done with 
MINITAB)

40



Means etc

Post-hoc comparison:
Dunnett Simultaneous Tests
Response Variable apop
Comparisons with Control Level
treat = C  subtracted from:

Difference       SE of           Adjusted
treat    of Means  Difference  T-Value   P-Value
CPG         18.00       7.949    2.264    0.1419
STAU        37.67       7.949    4.739    0.0155

Group Mean
C 365
CPG 383
STAU 403*
Pooled SD= 9.7

Standardised effect sizes
CPG   =  (383-365)/9.7 = 1.85
STAU =  (403-365)/9.7 =  3.91
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Example 3
Factorial designs

(By using a factorial design)”.... an experimental 
investigation, at the same time as it is made more 
comprehensive, may also be made more efficient if 
by more efficient we mean that more knowledge and 
a higher degree of precision are obtainable by the 
same number of observations.”   

R.A. Fisher, 1960

“..we should, in designing the experiment, artificially 
vary conditions if we can do so without inflating the 
error.

Cox, DR 1958



Example 3.Factorial designs are widely used but 
often incorrectly analysed

43

Number of studies  513 (Neuroscience papers)
Factorial designs    153  (30%)
Correctly analysed    78 (50%)   

Niewenhuis et al (2011) Nature Neurosci. 14:1105

Need a 2-way ANOVA with interaction



44

Example 3. Factorial “designs”
(they are really an arrangement of treatments)

Single factor design

Treated   Control

E=16-2 = 14

One variable at a time (OVAT)

Treated   ControlTreated   Control

E=16-2 = 14 E=16-2 = 14

Factorial design

Treated   Control

E=16-4 = 12
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Example 3a. Effect of chloramphenicol on 
RBC counts (2000µg/kg)

Strain Control Treated Strain means
BALB/c 10.10 8.95

10.08 8.45
9.73          8.68
10.09 8.89 9.37    

C57BL 9.60 8.82
9.56 8.24
9.14 8.18
9.20 8.10 8.86

Treat.
Mean      9.69          8.54

Want to know:
1. Does treatment 

have an effect on 
RBC counts

2. Do strains differ 
in RBC counts

3. Do strains differ 
in their response 
(interaction)

No interaction
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Example 3a. No interaction

8.
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C T

BALB/c
C57BL
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Example 3a. No interaction

Analysis of Variance Table

Response: RBCs
Df Sum Sq Mean Sq F value    Pr(>F)    

Treatment         1 1.0661  1.0661 17.1512  0.001367 ** 
Strain            1 5.2785  5.2785 84.9232 8.595e-07 ***
Treatment:Strain  1 0.0473  0.0473  0.7611  0.400108    
Residuals        12 0.7459  0.0622                      
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 
‘ ’ 1 
>
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Example 3b. Effect of chloramphenicol 
(2000mg/kg) on RBC count

Strain Control           Treated Strain means
C3H 7.85 7.81

8.77 7.21
8.48 6.96
8.22 7.10        7.80

CD-1 9.01 9.18
7.76 8.31
8.42 8.47
8.83 8.67 8.58

Treatment 
means 8.42                   7.96

Significan Interaction
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Example 3b. Interaction
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Example 3b
ANOVA with significant interaction

Analysis of Variance Table

Response: RBCs
Df  Sum Sq Mean Sq F value   Pr(>F)   

Strain            1 0.82356 0.82356  4.4302 0.057057 . 
Treatment         1 2.44141 2.44141 13.1330 0.003489 **
Strain:Treatment  1 1.47016 1.47016  7.9084 0.015686 * 
Residuals        12 2.23077 0.18590                    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 
> 
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Block  1

Treated   Control

Block  2

Treated   Control

One female mouse per cage. The two blocks were separated by approximately 2 months

A/J

129/Ola

NIH

BALB/c

DS Administered by gavage in three daily doses of 
0.2mg/g. to eight week old female mice 

Example 4. A 2x4 factorial design in two blocks.

Effect of diallyl sulphide (DS) on the activity of liver Gst in mice of 
four inbred strains
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Table 1. Gst levels* from a RB experiment in two blocks 
separated by approximately three months.

Strain Treatment Block1 Block2

NIH C 444 764
NIH T 614 831
BALB/c C 423 586
BALB/c T 625 782
A/J C 408 609
A/J T 856 1002
129/Ola C 447 606
129/Ola T 719 766

* nmol conjugate formed per minute per mg of protein

Example 4.  A 2x4 factorial design in two blocks. Raw 
data



Example 4.
Analysis of the results

53

ANOV Gst activity Score
Source           Df Sum Sq Mean Sq F value    Pr(>F)    
Block             1 124256  124256 42.0175 0.0003398
Strain            3  28613    9538  3.2252 0.0914353 .  
Treatment         1 227529  227529 76.9394 5.041e-05 *
Strain:Treatment 3  49590   16530  5.5897 0.0283197 *  
Residuals         7  20701    2957 

Treatment means
mean   data:n
C 535   8
T 774   8

Strain means
Strain  mean  n
129/Ola 634   4
A/J     718   4
BALB/c  604   4
NIH     663   4
Pooled SD 54.3

SES(treatment)= (774-535)/54.3=4.40

Pooled SD = sqrt(2957) = 54.3



Example 4. Mean responses in control and Diallyl
Sulphide-treated animals 

54

Error bars are least significant differences. If they overlap there 
is no significant difference (p>0.05), if they do not, then there is 
a significant difference (p<0.05)
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A well designed experiment.
(Will have a formal design)

l Clearly stated objectives
l Absence of bias

l Experimental unit, randomisation, blinding
l High power

l Low noise (uniform material, blocking, covariance)
l High signal (sensitive subjects, high dose)
l Large sample size 

l Wide range of applicability
l Replicate over other factors (e.g. sex, strain):            

factorial designs
l Simplicity
l Amenable to a statistical analysis

Internal 
validity

External 
validity



Experimental units (EUs)
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EU: Smallest division of the experimental material such that any two EUs 
can receive different treatments

A completely randomised design
Treatments assigned to individuals at 
random. 

N=6



Experimental units (EUs)
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EU: A cage with two animals.

N=6

Animals within cage/pen have same treatment. A completely randomised 
design



Experimental units (EU)
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EU: Smallest division of the experimental material such that any two EUs 
can receive different treatments

N=12

A randomised block design 
Animal within pen have different treatments.  



Experimental units (EU)
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EU: Smallest division of the experimental material such that any two EUs 
can receive different treatments

A split plot design. What are the experimental 
units? 
Animals within pen have different treatments.  

Males Females

For a split-plot 
analysis consult a 
statistician
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A “Crossover” (Randomised block) design 
(some authors also call this a repeated measures design)

Animal

1

2

3

N

4

4

4

N=12

Week 1        Week 2             Week 3           Week 4

EU: an animal for a period of time:
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Teratology: mother treated, 
young measured

Mother is the experimental unit. 

N=2

EU learning outcome 4. 
Identify the experimental unit and recognise issues of non-
independence (pseudo- replication).



What is the experimental unit
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An investigator wants to see whether outbred stocks are more 
variable than inbred strains in a test involving insect antigens.

He bought 16 BALB/c mice and compare  them with 16 ICR mice 
looking at within-group variation in 10 different immunological tests.

He found no difference in variability between the two groups.

He concluded that investigators could save a lot of money by using 
outbred stocks rather than inbred strains

What is the experimental unit?
Other comments?

Experimental unit is the strain and there is only 
one of each.
Need large sample sizes to test whether two 
groups differ in variability



Regression and correlation
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Dose, X

R
es

po
ns

e.
 Y

Variable A

Va
ria

bl
e 

B

Prediction of Y from X                         Association between Variables A and B
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Statistical analysis should fit 
the purpose of the study

A Completely Randomised Design
Experimental unit??

Lesion diameter clearly increases with power, but aim is to quantify this

Lesion diameter following microwave treatment of liver of pigs.

Power 
(watts)                                                                           Mean

50 3.3 3.2 2.8 2.8 2.4 2.7 3.2 3.8 1.5        2.9
100 4.7 4.0 3.5 4.4 3.9 4.8 4.4 3.7 4.0        4.2
150 5.5 5.0 4.4 4.5 6.0 6.5 5.0 5.0 5.3
200 5.8 6.0 5.9
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Regression analysis



Randomisation
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Treated group cages

1

2

3

4

5

6

Control group cages

7

8

9

10

11

12

The animals are remarkably 

uniform. Why do we need to 

randomise them?

Why not assign alternatively to 

the two groups?

If we did this, what would be the 

experimental unit?



Randomisation and blinding 
using EXCEL
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Treatment RandNo
A 0.916
A 0.017
A 0.632
A 0.401
B 0.437
B 0.636
B 0.373
B 0.045
C 0.134
C 0.665
C 0.750
C 0.517

Sorted by Rand No.      Animal
A 0.017 1
B 0.045 2
C 0.134 3
B 0.373 4
A 0.401 5
B 0.437 6
C 0.517 7
A 0.632 8
B 0.636 9
C 0.665 10
C 0.750 11
A 0.916 12



Randomising a randomised 
block design
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Treatment Block RandomNo Treatment Block RandomNo Treatment Block RandomNo
A 1 0.208 A 3 0.779 B 1 0.423
A 2 0.642 B 1 0.333 A 1 0.010
A 3 0.322 A 1 0.544 C 1 0.816
A 4 0.098 C 2 0.797 C 2 0.870
B 1 0.974 B 2 0.162 B 2 0.500
B 2 0.687 B 4 0.907 A 2 0.234
B 3 0.113 C 4 0.471 A 3 0.436
B 4 0.827 C 1 0.162 B 3 0.304
C 1 0.405 A 4 0.906 C 3 0.658
C 2 0.543 A 2 0.701 B 4 0.075
C 3 0.147 B 3 0.416 C 4 0.998
C 4 0.292 C 3 0.719 A 4 0.179

Original unsorted                  Sorted on rand()           .          2nd. Sort on block
ID
1
2
3
4
5
6
7
8
9
10
11
12

Each block blinded once 
treatments have been given

3 treatments, A, B, C.
4 blocks 1-4
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Failure to randomise and/or blind 
leads to more “positive” results

Blind/not blind                 odds ratio           3.4 (95% CI 1.7-6.9)

Random/not random        odds ratio            3.2 (95% CI 1.3-7.7)

Blind Random/                odds ratio            5.2 (95% CI 2.0-13.5)
not blind random

290 animal studies scored for blinding, randomisation and 
positive/negative outcome, as defined by authors

Bebarta et al 2003 Acad. emerg. med. 10:684-687



Classification variables
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Some variables such as gender and genotype 
are “classifications” instead of being 
“treatments”.

Animals to be compared should be the same 
age and from the same environment and 
should be housed and measured in random 
order.
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Inbred strains or outbred 
stocks

l Isogenic (animals identical)
l Homozygous, breed true (not F1)
l Phenotypically uniform
l Defined (quality control)
l Genetically stable 
l Extensive background

data with genetic profile
l Internationally distributed

l Each individual different
l Do not breed true
l Phenotypically variable
l Not defined (no QC)
l Genetic drift can be rapid
l Validity of background data 

questionable. No genetic profile
l Not internationally distributed

Isogenic strains (inbred, F1) Outbred stocks

Like immortal clones of genetically 
identical individuals. Several hundred 
strains available. 

Cheap and widely used, but the cost 
of the animals is a small proportion 
of total costs



22 Nobel prizes since 1960 where use 
of inbred strains was essential

Immunology
Medawar and Burnet- Immunological tolerance (1960)
Doherty and Zinkanage-MHC restriction (1996)
Beutler and Steinman-innate immunity  (2011)
Tonegawa-antibody diversity (1987)
Jerne -T-cell receptor (1984)
Snell-Transplantation loci (1980)
Kohler and Milstein-monoclonal antibodies (1984)

Genetic modification
Evans-embryonic stem cells (2007)
Capecchi-homologous recombination (2007)
Smithies-genetic modification (2007)

Genetics
Axel and Buck-genes for olfaction (2004)

Transmissable encephalopathies
Pruisiner (1997)

Growth factors
Cohen, Levi-Montalcini (1986)

Cancer
Varmus (1989), Bishop (1989), Baltimore (1975), Temin (1975) 
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Why do scientists continue to use outbred 
stocks when inbred strains are available?

Humans are outbred
We wish to model humans

Therefore we should use outbred animals
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Why do scientists continue to use outbred 
stocks when inbred strains are available?

Humans weigh 70 kg
We wish to model humans

Therefore we should use 70 kg animals

What do we mean by “model” ?
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Models and the high fidelity fallacy
(after Russell and Burch)

Fidelity

Ability to discriminate

Cindy doll

Home pregnancy kit

NH primate

In-vitro test

EU 10.1 (Describe the concepts of fidelity and discrimination (e.g. as discussed by Russell and Burch and others).

Outbred rat

Inbred rat



The determination of sample 
size
Three methods of determining sample size

76

Power analysis
Makes use of the mathematical relationship between the six variables 
that can determine sample size when there are two treatments.
Complex and widely misunderstood. It is not an objective method of 
determining sample size because it requires a subjective estimate of the 
minimum effect size likely to be of scientific interest. It also has “spurious 
precision”

Resource equation
Based on practical experience. Experiments should have between about 
10 and 20 degrees of freedom in the analysis of variance of the results.
But ERCs  & funders often want a power analysis..

“Tradition”
Copy other investigators in the same discipline. Some merit, but 
ERCs  & funders often want a power analysis.



Tradition
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“Except in rare instances…., a decision on the size of the 
experiment is bound to be largely a matter of judgement and 
some of the more formal approaches to determining the size 
of the experiment have spurious precision”.

Cox DR, Reid N. The theory of the design of experiments. 
Boca Raton, Florida: Chapman and Hall/CRC Press; 2000.

Sir David Cox has written two books on experimental design and is the first 
winner of the “International Statistics prize”. There are few other statisticians 
in the world who are as highly respected. He and Dr Reid are clearly referring 
to the power analysis when they mention “spurious precision”
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Power Analysis for sample size and 
effects of variation

l A mathematical relationship between six variables. Fix 
five of these to determine the 6th one.

l Needs subjective estimate of effect size to be detected 
(signal)

l Has to be done separately for each character
l Not easy to apply to complex designs
l Essential for expensive, simple, large experiments 

(clinical trials)
l Useful for exploring effect of variability
l Not objective. It requires an estimate of size of treatment 

effect that the investigator wants to be able to detect



Factors affecting power and 
sample size
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3.Power
Specified (80-90%?)

4.Significance 
level. Specified 
Specified (0.05?)

5.Sidedness
Specified

2 .Effect size

Genetic variation 
(inbred/outbred)

1.Variability (SD)
(Previous studies)

6. Sample size

Environmental 
variation/infection

Standardised effect 
size, d. or SES

Type of experimental unit
(e.g. within/ between)

Strain and character 
sensitivity

Dose level

Research budget

Experimental design
(completely randomised/ blocked)

Research question

Data quality/Measurement 
error

Availability

Variation in model 
preparation



Standardised effect size (d) as a function 
of sample size for four levels of power
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Assuming a 2-sided 
test.

Vertical lines 
correspond to sample 
sizes for the Resource 
Equation method.



A simplified way of determining sample size using a power 
analysis.
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Sample 

size

80% one 

sided

90% one 
sided

80% Two-
sided

90% Two-
sided

4 2.00 2.35 2.38 2.77
5 1.72 2.03 2.02 2.35
6 1.54 1.82 1.80 2.08
7 1.41 1.66 1.63 1.89
8 1.31 1.54 1.51 1.74
9 1.23 1.44 1.41 1.63

10 1.16 1.36 1.32 1.53
11 1.10 1.29 1.26 1.45
12 1.05 1.23 1.20 1.39
13 1.00 1.18 1.15 1.33
14 0.97 1.14 1.10 1.27
15 0.93 1.10 1.06 1.23
16 0.90 1.06 1.02 1.18
17 0.87 1.03 0.99 1.15
18 0.85 1.00 0.96 1.11
19 0.82 0.97 0.93 1.08
20 0.80 0.94 0.91 1.05
21 0.78 0.92 0.89 1.03
22 0.76 0.90 0.86 1.00
24 0.73 0.86 0.83 0.96
26 0.70 0.82 0.79 0.92
28 0.67 0.79 0.76 0.88
30 0.65 0.76 0.74 0.85
32 0.63 0.74 0.71 0.82
34 0.61 0.72 0.69 0.80

Suggested procedure

1. Find an SD for character of interest

2. Choose a sample size based on 
previous experience/published work, 
available resources

3. Look in table (left) to find Cohen’s d
for chosen power and sidedness

4. Multiply d by the SD to get effect size 
(ES: difference between means) in 
original units

5. Decide whether this ES is sufficient. 
e.g.. would it be better to be able to 
find a smaller ES? If so, choose a 
larger sample size and repeat.

6. Explain any calculations and 
assumptions in manuscript

SES (Cohen’s d) for 80% & 90% power 
one or two sided assuming a 5% 
significance level



Estimating sample/effect size 
for an experiment
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Sample
Size          d or SES 90% 2 sided
4 2.77
5 2.35
6 2.08
7 1.89
8 1.74
9 1.63
10 1.53
11 1.45
12 1.39
13 1.33
14 1.27
15 1.23
16 1.18
17 1.15
18 1.11
19 1.08
20 1.05
21 1.03
22 1.00
24 0.96
26 0.92
28 0.88
30 0.85
32 0.82
34 0.80

Question: Does your new drug alter RBC 
count in mice?
1.  From literature C57BL /6 mice have a mean Red Blood 
Cell count of 9.19, SD=0.40 (n/µL).

2. Say your preliminary choice is a sample size of  n=12 
mice/group

3. From table, left, for 90% power, two sided d=1.39

4. Detectable effect size=d*SD,  = 1.39*0.40=0.56 n/µL

5. This is a (0.56/9.19)*100= 6%  change.

6. Is this OK? If not, change sample size. 
If you used 24 mice/group the predicted ES would be  
0.96*0.40=0.38 n/µL., a 4% change

7. You state: “From published work the mean and standard 
deviation of RBC in C57BL/6 mice is about 9.19±0.40. 
Using a power analysis I estimated that a sample size of 
n=12 will provide a 90% chance of detecting a change in 
RBC count of 0.56 n/µL or 6%.”

This depends on getting an SD of 0.40 or less



Cohen’s d from previous 
examples

83

Example 1. Effect of MCA and urethane on micronuclei. 
MCA,          d=0.22 (ns)
Urethane    d=1.96

Example 2. Apoptosis in rat thymocytes
CPG           d=1.85(ns)
STAU          d=3.91

Example 3.   Explaining factorial designs (see next slide)

Example 4.  Randomised block factorial design, effect of diallyl sulphide
d=4.4

Other studies: Cohen’s d is often well above 2.0 SDs in laboratory animal 
experiments.

So sample sizes can be small if variation controlled.



84

Note differences 
due to
1. Strain
2. Dose 
3. Character 

Examples of Cohen’s d (SES) in chloramphenicol 
experiment. 

Data from:
Festing MFW, Diamanti P, Turton
JA. Strain differences in 
haematological response to 
chloramphenicol succinate in mice: 
implications for toxicological 
research. Food and Chemical 

Toxicology 2001;39:375-83.

d=1 “extra large”, 
d=2  “gigantic”



1. TITLE.
2. ABSTRACT
INTRODUCTION

3. Background.
4. Objectives.

METHODS
5. Ethical statement
6. Study design
7. Experimental procedures.
8. Experimental animals
9. Housing and husbandry
10. Sample size
11. Allocating animals to experimental 

groups
12. Experimental outcomes
13. Statistical methods

The ARRIVE Guidelines. 
Main headings

RESULTS
14. Baseline data
15. Numbers analysed
16. Outcomes and estimation
17. Adverse events

DISCUSSION
18. Interpretation/scientific 
implications
19. Generalisability/translation.
20 Funding

Kilkenny,C., W.J.Browne, I.C.Cuthill, 
M.Emerson, and D.G.Altman. 2010. 
"Improving bioscience research reporting: 
the ARRIVE guidelines for reporting 
animal research." PLoS.Biol.
8:e1000412.



Design of procedures and projects (level 1) 
– EU Modules 10 and 11
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1. Describe the concepts of fidelity and discrimination (e.g. as discussed by 
Russell and Burch and others).

2. Explain the concept of variability, its causes and methods of reducing it (uses 
and limitations of isogenic strains, outbred stocks, genetically modified strains, 
sourcing, stress and the value of habituation, clinical or sub-clinical infections, 
and basic biology).

3. Describe possible causes of bias and ways of alleviating it (e.g. formal 
randomisation, blind trials and possible actions when randomisation and 
blinding are not possible).

4. Identify the experimental unit and recognise issues of non-independence 
(pseudo- replication).

5. Describe the variables affecting significance, including the meaning of 
statistical power and “p-values”.

6. Identify formal  ways of determining  of sample size (power analysis  or the  
resource equation method).

7. List the different types of formal experimental designs (e.g. completely 
randomised, randomised block, repeated measures [within subject], Latin 
square and factorial experimental designs).

8. Explain how to access expert help in the design of an experiment and the 
interpretation of experimental results
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1. Describe the principles of a good scientific strategy that are necessary to achieve robust 
results, including the need for definition of clear and unambiguous hypotheses, good 
experimental design, experimental measures and analysis of results. Provide examples of 
the consequences of failing to implement sound scientific strategy

2. Demonstrate an understanding of the need  to take expert advice and use appropriate 
statistical methods, recognise causes of biological variability, and ensure consistency 
between experiments. 

3. Discuss the importance of being able to justify on both scientific and ethical grounds, the 
decision to use living animals, including the choice of models, their origins, estimated 
numbers and life stages. Describe the scientific, ethical and welfare factors influencing the 
choice of an appropriate animal or non-animal model.

4. Describe situations when pilot experiments may be necessary.
5. Explain the need to be up to date with developments in laboratory animal science and 

technology so as to ensure good science and animal welfare
6. Explain the importance of rigorous scientific technique and the requirements of assured 

quality standards such as GLP.
7. Explain the importance of dissemination of the study results irrespective of the outcome 

and describe the key issues to be reported when using live animals in research e.g. 
ARRIVE guidelines.

Design of procedures and projects (level 2) 
– EU Modules 9, 10, 11Good scientific practice
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2002                                                             2016
https://uk.sagepub.com/en-gb/eur/the-design-of-animal-
experiments/book252408

ISBN: 9781473974630  £15.99

https://uk.sagepub.com/en-gb/eur/the-design-of-animal-experiments/book252408


WWW.



www.3Rs-reduction.co.uk
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Conclusions
l We are not born knowing how to design a randomised controlled 

experiment. We need to be taught how to do so.
l Clearly, animal experiments are not always well designed
l Five requirements for a good design

l Unbiased (randomisation, blinding, randomized block design)
l Powerful (control variability, uniform materials, blocking)
l Wide range of applicability, e.g. using factorial designs
l Simple
l Amenable to statistical analysis

l Use a power analysis to estimate effect size for a proposed sample size
l Use a randomized block design where possible
l Better training is needed  (how?)
l More consultant bio-statisticians should be provided (free?)
l Funding organisations should take responsibility for the quality of the 

research that they fund!
l Negative results should be as acceptable as positive ones.


