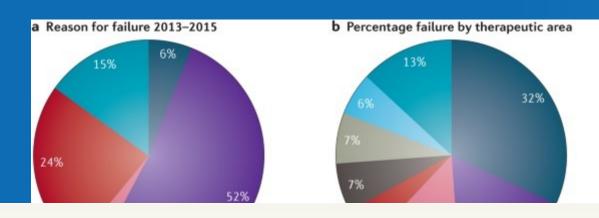
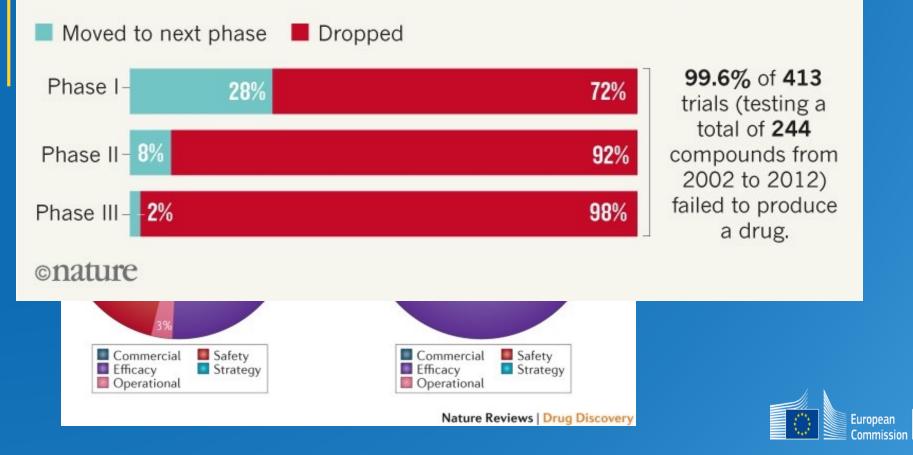
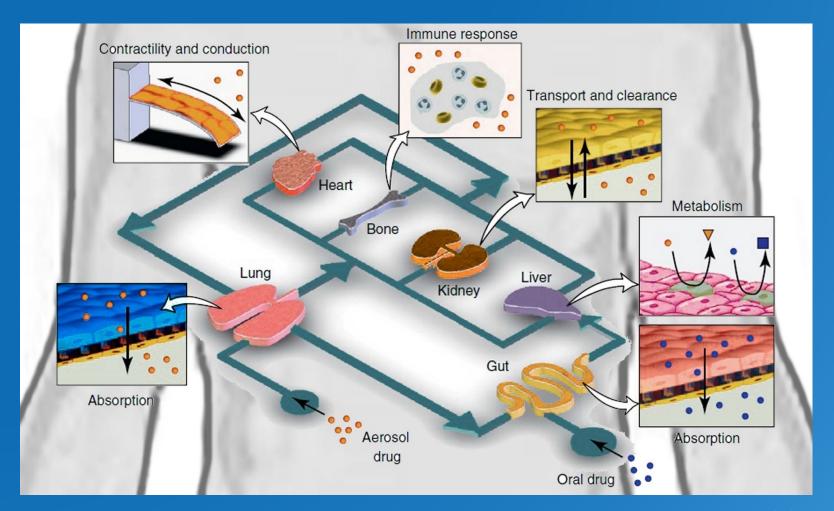


Innovative models in biomedical research


Evangelos P. Daskalopoulos European Commission, Joint Research Centre (JRC), Ispra, Italy EUSAAT 2022


95% rats & mice


ALZHEIMER'S DRUG ATTRITION

A decade's worth of clinical trials identified only one approved drug.

Innovative NAMs

Non-animal methods used in research

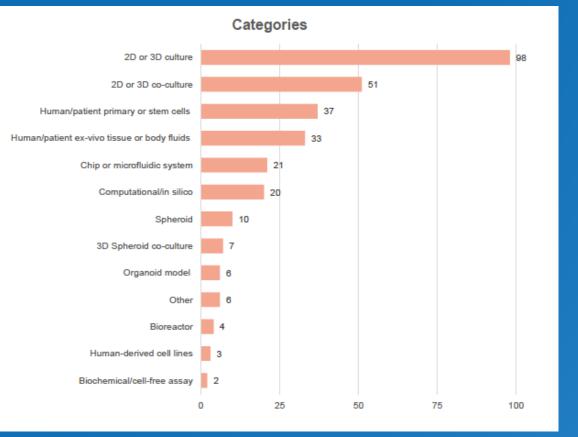
- Knowledge-base of models
- Meta-analyses to understand strategies and approaches

Cardiovascular diseases

Respiratory tract diseases

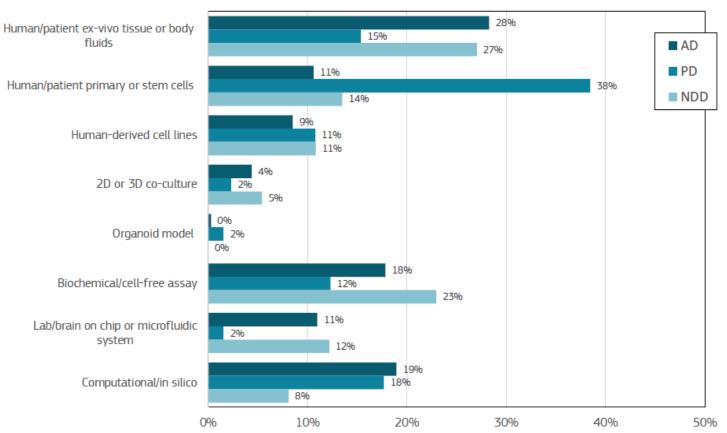
Neurodegenerative diseases

Immunogenicity testing for ATMPs

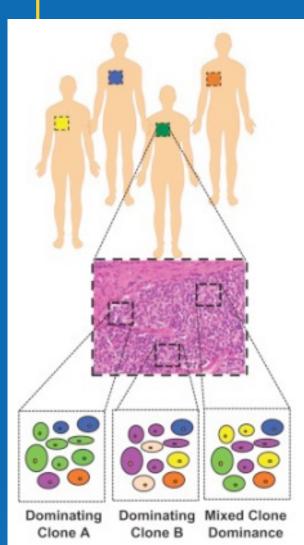

Immunooncology

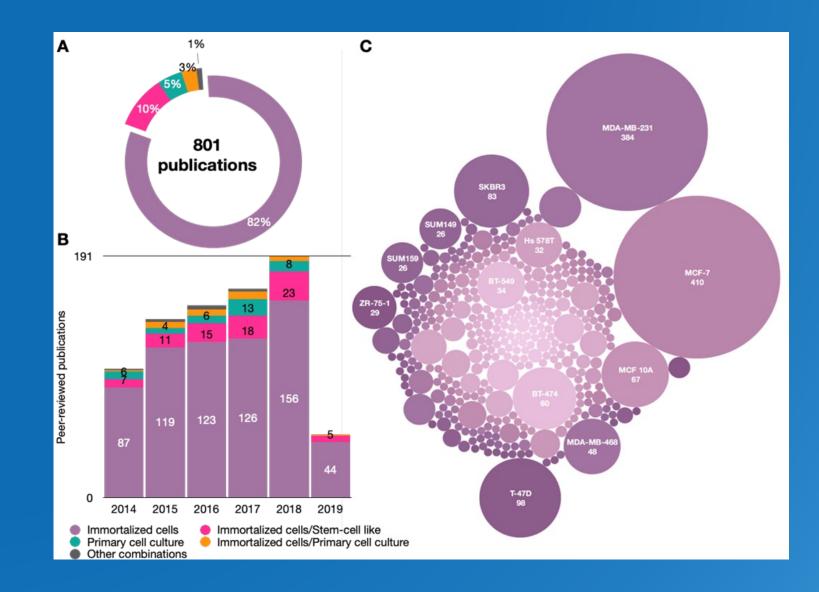
Autoimmune diseases

Respiratory Tract Diseases

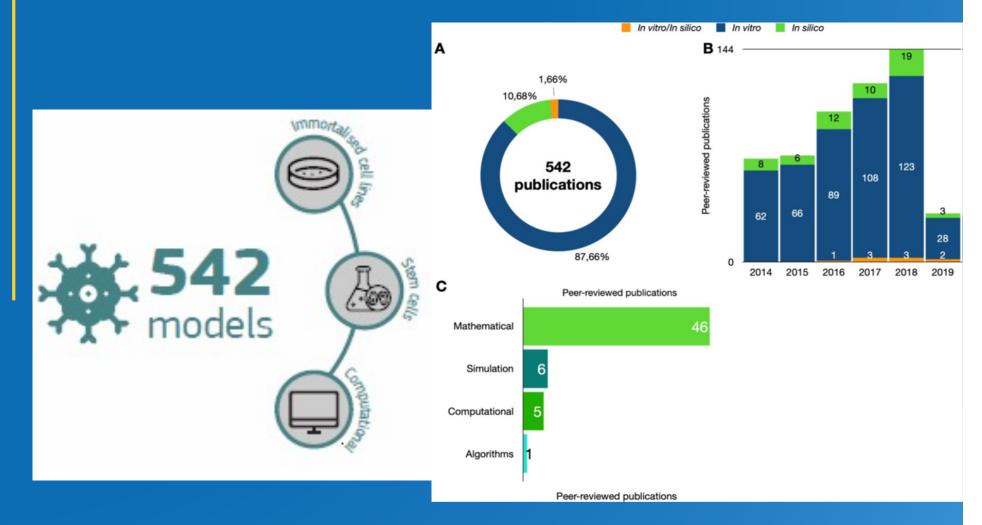


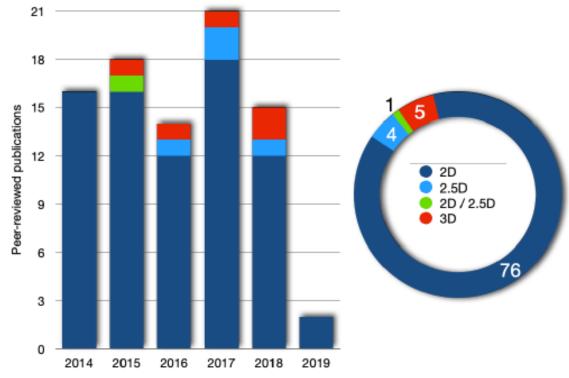
Neurodegenerative disease





Intra-Tumor Heterogeneity


In EU over 355,000 women diagnosed with breast cancer in 2020 (source: ECIS)


Immuno-oncology

Immunogenicity for ATMP testing

European Commission

Ac

Advanced Non-animal Models in Biomedical Research

Immunogenicity testing for advanced therapy medicinal products

Joint Researc Centre

for human relevant studies that avoid the use of animals. BREAST CANCER AND ITS HETEROGENEITY Breast cancer is the most commonly occurring cancer in women in the European Union and

worldwide. The European Cancer Information System (ECIS) estimates that in 2020 over 355,000 women were diagnosed with breast cancer in the EU, accounting for 13.3% of all cancers diagnosed.

Despite advances in early detection and understanding of breast cancer biology, relapse and subsequent metastasis often occurs in bone, lung, liver and brain

Human breast cancer is highly heterogeneous even within the same tumour. To offer better treatment with increased efficacy, it is necessary to use therapies that match patient profiles and the clinical and molecular characteristics of the tumour.

animal models, which, however, have limitations in capturing important cancer traits.

towards the use of advanced non-animal models that more faithfully represent the characteristic

'Before reaching the age of 75, 1 in 22 women will be diagnosed with breast cancer and 1 in 73 women will die from breast cancer, worldwide' IARC Handbooks of Cancer

Breast Cancer

2

ention Volume 15

requirements for the implementation of the Three Rs' principles of Replacement, Reduction and Refinement of animal procedures. The final goal is the phasing out of animal testing when scientifically valid non-animal alternatives are available.

nced Non-animal Models in Riomedical Research

Advanced Non-animal Models in Biomedical Research:

Breast cancer is the most common cancer among women in the European Union

and worldwide. Preclinical breast cancer research currently relies on animal

models, mostly rodents. However, animal models mimic limited aspects of

human breast cancer. The European Commission's Joint Research Centre (JRC)

has carried out an extensive review of the state-of-the-art of advanced non-

animal models used for basic and applied research on breast cancer. Researchers characterised and catalogued about **900 models** to make them more accessible

To aid this transition, the JRC's EU Reference Laboratory for alternatives to animal testing (EURL ECVAM) produced a unique knowledge base of detailed descriptions of non-animal models used for breast cancer research.

KNOWLEDGE BASE OF NON-ANIMAL MODELS

About 120,000 scientific papers were reviewed to identify relevant human-based models of breast cancer. From those, a total of 935 models were selected as being the most representative and promising.

935 models

> Technical Report

- > Executive Summary
- > Leaflets
- > JRC Data catalogue

EUR 305344 EN

Breast cancer research currently relies heavily on For this reason, research is gradually moving

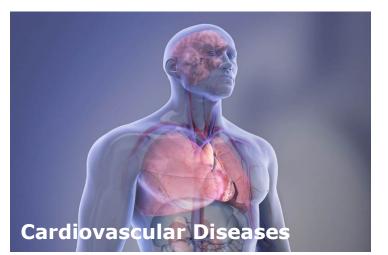
А	В	С	D	E	F	G	н	I.	J	К	L	М
Model าง.	Disease area	Disease feature	Category 🗸	Туре	Application/ aim	Biological or disease- specific endpoint	Assay Throughput/ Content	Relevance	Potential/Future developments	DOI 🗸	Author name	Year •
ŀ	AD	00 0	Lab/brain on chip or microfluidic system	Proteins	Disease mechanism (exp/theor)	Protein dysfunction: amyloid peptide (any	Low- medium/medium	Medium - Attempting to	A more complete in vitro microfluidic	http://dx.doi.org/10.1021/acschem neuro.7b00285	Gospodarczyk	2017
2	AD	Protein aggregation	Lab/brain on chip or microfluidic	Proteins	Drug developm/ testing	version) Protein dysfunction: BACE1	High	recapitulate fluid- Low - Method of	system for studying Could be applied to		Liu	2017
			system				(automatic)/low	screening therapeutics, BACE1	additional small molecule libraries	<u>017-0617-y</u>		
8	AD		Lab/brain on chip or microfluidic system	Proteins	Diagnosis of disease	Protein dysfunction: amyloid peptide (any version)	High (automatic)/Iow	Low - Diagnosis of disease by detection of	The high sensitivty of the device suggests that it may	http://dx.doi.org/10.1038/s41598- 017-14338-4	Yoo	2017
1	AD	Protein aggregation	Lab/brain on chip or microfluidic system	Proteins	Drug developm/ testing	Protein dysfunction: BACE1	High (automatic)/low	Low - Method of screening therapeutics, BACE1	Could be integrated into fully automated system	http://dx.doi.org/10.1016/j.chroma. 2017.08.065	Roman	2017
5	AD	Protein aggregation	Lab/brain on chip or microfluidic system	Proteins	Diagnosis of disease	Protein dysfunction: amyloid peptide (any version)	High (automatic)/low	Low - Diagnosis of disease by detection of Amyloid Beta,	May be adapted to detection of other biomarkers	http://dx.doi.org/10.3390/bios7 030029	Dai	2017
5	AD	Neuroinflammation	2D or 3D co-culture	Neurospheres/3D model	Drug developm/ testing	Changed protein expression	High (automatic)/mediu m	High - throughput of 96well compatible format >1000	Model likely to be used for high throughput drug	http://dx.doi.org/10.1038/s41598- 018-20436-8	Jorfi	2018
'	AD	Protein aggregation	Lab/brain on chip or microfluidic system	Proteins	Diagnosis of disease	Protein dysfunction: amyloid peptide (any version)	High (automatic)/low	Low - Diagnosis of disease by detection of	Magnetic Bead assay could automated for high	http://dx.doi.org/10.1016/j.snb.201 7.09.003	Mai	2018
3	AD	00 0	Lab/brain on chip or microfluidic system	Proteins	Diagnosis of disease	Protein dysfunction: amyloid peptide (any version)	High (automatic)/Iow	Low - Diagnosis of disease by detection of	Magnetic Bead assay could automated for high	http://dx.doi.org/10.1016/j.bios.20 14.10.042	Kim	2015
,	AD	Protein aggregation	Lab/brain on chip or microfluidic system	Proteins	Disease mechanism (exp/theor)	Protein dysfunction: amyloid peptide (any version)	High (automatic)/mediu m	Medium - Platform for studying in vitro protein-protein	Can be used for a variety of proteins and determination	http://dx.doi.org/10.1016/j.bios.20 14.11.025	Wang	2015
10	Several NDD	Exploratory/ no specific feature	Biochemical/cell-free assay	Fibrils	Disease mechanism (exp/theor)	Protein dysfunction: a- synuclein	Low-medium/low	Medium - Platform for fibril growth (PD- related)	Could be used for identification of compunds that	http://dx.doi.org/10.1016/j.jmb.201 5.01.020	Woerdehoff	2015
11	PD	Neuroinflammation	Lab/brain on chip or microfluidic system	Co-culture model (multiple cells)	Disease mechanism (exp/theor)	Oxidative/nitrosative stress	High (automatic)/mediu m	Medium - In vitro platform for investigation of	Could be used to study generation of chemotaxis	http://dx.doi.org/10.3389/fnins.201 6.00511	Fernandes	2016
12	PD		Lab/brain on chip or microfluidic system	Co-culture model (multiple cells)	Disease mechanism (exp/theor)	Protein dysfunction: a- synuclein	High (automatic)/mediu m	Medium - In vitro platform for investigation of a-	Could be used to study generation of chemotaxis	http://dx.doi.org/10.3389/fnins.201 6.00512	Fernandes	2017
13	Several NDD	Exploratory/ no specific feature	Lab/brain on chip or microfluidic system	Other	Disease mechanism (exp/theor)	Mitochondrial dysfunction	High (automatic)/mediu m	Medium - In vitro platform for measuring	Could be applied to specific disease- state models as a	http://dx.doi.org/10.1007/s13238- 016-0268-3	Chen	2016
14	AD	00 0	Lab/brain on chip or microfluidic system	Proteins	Diagnosis of disease	Protein dysfunction: amyloid peptide (any version)	High (automatic)/low	Low - SPR platform used for measuring amyloid beta	High sensitivity suggests could be used for clinical	http://dx.doi.org/10.3938/jkps.69.7 93	Kim	2016
15	AD	Protein aggregation	Lab/brain on chip or microfluidic system	Peptides	Disease mechanism (exp/theor)	Protein dysfunction: amyloid peptide (any	High (automatic)/Iow	Medium - In vitro platform for	Could be used to investigate neurite	http://dx.doi.org/10.1002/adhm.20 1600895	Li	2017
					<u> </u>	version)	I	measuring APP	specific response to			L

Main Conclusions

Extensive use of NAMs (esp. in vitro) but clear need for more complex ones.

Standard operating procedures (SOP) for model generation and testing will be essential and should be encouraged.

Promote more effective cross-talk and multidisciplinarity between different fields essential for further development of organoid, OoC etc models.



Dissemination Plan

- Research groups submitting a project proposal which makes use of living animals;
- Animal Welfare Bodies advising research groups on project proposals;
- Competent Authorities who are responsible for project evaluation;
- National Committees that facilitate a coherent approach to project evaluation, dissemination of information and sharing of best practice within each Member State;
- National Contact Points, who are responsible for the implementation of the Directive in the Member States

Coming Soon

EU Science Hub

European Commission > EU Science Hub > EU Reference Laboratory for alternatives to animal testing (EURL ECVAM) > Life science research

Life science research

According to the last report on the use of animals for scientific purposes in EU Member States, in 2019 about 70% of animals were used in basic and in applied and translational research in the fields of human and veterinary medicine.

Review of advanced non-animal models in biomedical research

EURL ECVAM has launched a series of studies to review available and emerging non-animal models being used for research in seven disease areas:

- respiratory tract diseases
- breast cancer
- neurodecenerative disorders
- immuno-oncology
- immunogenicity testing for advanced medicinal therapy products
- cardiovascular disease
- autoimmunity

Aim

The aim is to identify and describe specific research contexts where animal models have been put aside in favour of novel non-animal techniques that use, for example, in vitro methods based on human cells and engineered tissues or in silico approaches employing computer modelling and simulation.

Transition towards non-animal approaches

The expectation is that by understanding and sharing information on successful use-cases of alternative models in biomedical research, the transition towards non-animal approaches can be better facilitated and potentially accelerated.

Tackling human diseases

Encouraging the uptake of alternative methods is important to tackle such considerable reliance on animal experiments for carrying out research

Moreover, since alternative methods offer the promise of recapitulating human physiology more effectively than many animal models, shifting to new animal-free methodologies and research strategies can in fact enhance the understanding of human-specific biology and disease.

The series of studies

the most rer models according to a set of

wed publication

A total of 284 publications were identified a Around 120,000 peer-rev ntative and innovative were retrieved and screened for innovative and promising advanced non-animal

mmuno-oncology 542 scientific peer-reviewed articles were selected for a deeper analysis of the nonanimal models used.

Immunogenicity testing for advanced therapy medicinal products 88 advanced non-animal models were

created an inventory of 567 models ranging from biochemical and dational approaches to different type of cell cultures and procedures using ex vivo human material

Neurodegenerative diseases

Work in progress

This year, the EP funded a Pilot Project to develop an automated database to collect and structure NAMs for use in biomed research.

Based on this dataset for training machine learning algorithms or AI.

We are launching the project with the aim to complete it by 2024 when a consolidated version of the dataset should be published.

Thank you!

Views expressed in this presentation are the ones of the presenter and do not necessarilly reflect the official views of the European Commission.

Evangelos P. Daskalopoulos

Technical / Scientific Officer F3 Unit - Chemical Safety and Alternative Methods Directorate for Health, Consumers and Reference Materials European Commission, Joint Research Centre (JRC) Ispra (VA), Italy email: <u>evangelos.daskalopoulos@ec.europa.eu</u> Twitter: @epdaskalopoulos

