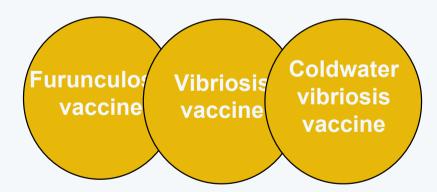
Vaccine testing: How can we reduce fish numbers and/or avoid the use of fish?

Kjetil Fyrand/Kjersti Gravningen PHARMAQ AS

norecopa conference, Gardermoen 22-24 September 2009

Content of the presentation


- Regulatory framework
- From R&D to fish farmer
- The use of study animals during:
 - Development
 - Documentation
 - Field tests
- Study animals used for batch release
- Reduce, Refine and Replace
- Conclusion

Regulatory framework

- -Licensing documentation
- European Monographs
 - Mandatory
 - Must be implemented for all new and existing products
- Guidelines and Position papers
 - Neither mandatory for the industry nor the authorities

- Production and Control
- Safety
- Efficacy

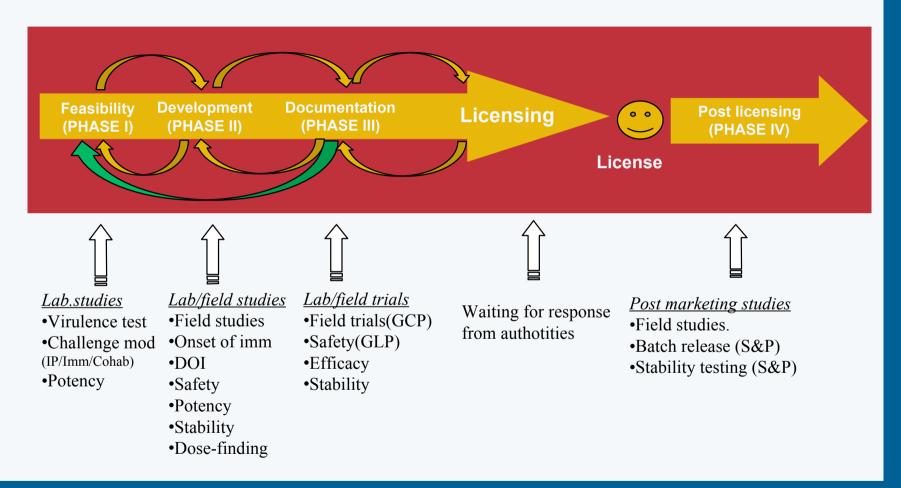
The framework sets the standard the industry

Regulatory framework - Pharmacopoeia

- Evaluation of safety of veterinary vaccines (Ph. Eur. 5.2.6)
- Evaluation of efficacy of veterinary vaccines (Ph. Eur. 5.2.7)
- Furunculosis vaccine (inactivated, oil-adjuvanted, injectable) for salmonids (Ph. Eur. 1521)
- Vibriosis (Cold water) vaccine (Inactivated) for salmonids (Ph. Eur. 1580)
- Vibriosis vaccine (inactivated) for salmonids (Ph. Eur. 1581)

Mandatory for the industry

Regulatory framework


- -Guidelines and Position Papers
- Guideline on good clinical practice (CVMP/VICH/595/98)
- Good Laboratory Practice
- The general requirement for the production and control of live and inactivated vaccines intended for fish (81/852/EEC)
- Data requirement for removing the target animal safety test for immunological veterinary medicinal products in EU (EMEA/CVMP/865/03/Final)

Guidelines may be deviated, when thoroughly justified

Documenting a new product -From R&D to fish farmer

The feasibility-development and documentation studies which include fish

Commonly used methods -In clinical vaccine studies

- Administration of vaccines (Imm; I.P or Oral).
- Anaesthesia (Metacain, Benzokain,)
 - √ Always used prior to invasive procedures
- Blood-sampling from vena caudalis.
- Marking of fish by; removal of adipose fin, fluorescent dye, implant or tattooing (Alcian blue).
- Challenge of vaccinated fish with pathogens (I.P;Imm;Cohab).
- Euthanized prior to sampling.

Clinical development and documentation studies

- Studies must be relevant, using sufficient numbers of animals to obtain true differences between groups
 - Statistical design and methods should be used in order to optimise the study design. Statistical differences may not be of clinical relevance.
- Tests and methods employed should be validated (high specificity; repeatability and reproducible).
- Clinical laboratory and field studies should mimic the situation in field (this is a challenge....)

Research fish used during: Documentation of efficacy –lab.

- Documentation of three batches of final product.
- Show consistency between batches.
- One dose of vaccine injected.
- Fish marked for identification.
- Challenge I.P at 6-8 weeks post vaccination (relevant method?).
- Control mortality ≥ 60%.
- Mortality observed until 21 days after the first specific death of fish.

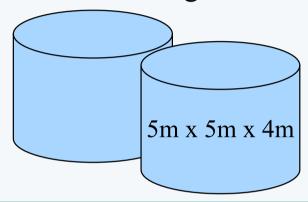
Test	Guideline	# fish / batch and antigen	# fish (total)	Observation	
Efficacy					
Monovalent	Ph. Eur.	100	800	21 days after the first specific death	
Hexavalent			4000		

Efficacy test is important and is performed once only.

Research fish used during: Documentation of safety - lab. (GLP)

- Secure that the product is safe to use (toxicity test)
- Documentation of 3 batches
- Fish blood sampled prior to vaccination (doc of seronegativity)
- Marking by fin clipping
- Injected double dose of vaccine and observed for 21 days

Test	Guideline	# fish /batch	# fish (total)	Observation
Double dose safety	Ph Eur.	50	150 (v)+ 50(c)	21 days


The GLP-Safety test is relevant but does not disclose true local reaction profile

Research fish used during: -Field studies

Trial in mini cages

<u>Advantages</u>

- •Frequent sampling
- •Pilot vaccines may be tested
- •Eliminate cage variation
- •May be exposed to natural challenge
- •Use a limited number of fish

Design

- •Two replicate cages
- •1000 3000 fish per cage
- •6 groups per cage
- •Groups are marked and mixed
- •Two premises ran in parallel

Disadvantages

- •Outbreak of disease rarely occurs
- •Does not equal production cages
- •Growth not optimal
- •Fish not for commersial consumption

The mini cage studies give good and reliable documentation

Fish used during: GPC-Field trials

Trial in production cages

157 meter circumference

Documentation of safety and "efficacy (antibody)".

Design

- •Min 3 sites included in the trial
- •One or two cages/vaccine per site
- •4-500.000fish per cage
- •Test and control (positive) product in separate cages

Advantages

- •Production conditions
- •Self experience for farmer
- •May be exposed to natural challenge
- •Fish used for human consumption

Disadvantages

- •Outbreak of disease rarely occurs
- •Replicates more difficult
- •Difficult to do proper sampling
- •Lot of vaccine necessary
- •Approx 2 mill fish needed per site

Are fish vaccinated with licensed vaccines (control), under standard conditions research animals?

Replacement-Reduction-Refinement

R-R-R;

Related to Feasibility-Development-Documentation studies.

- In vivo tests are necessary tools in order to develop safe and efficacous vaccines. In my opinion these testet will not (on a short term perspective) be possible to replace by in vitro tests, but;
 - ✓ Optimising study design could reduce the number of fish included in each *in vivo* study.
 - ✓ All equipment at the trial facility should be optimised for conducting fish trials.
 - ✓ Anaesthetic should be used prior to all stressfull situation of a certain magnitude.
 - ✓ High water quality should be available for the trial fish.
 - **✓** Automatic survailance systems should monitor the environment of the fish.
 - ✓ Clinical trail staff needs to be trained in order to handle the trial fish.
 - √ The least invasive (but relevant) vaccination/challenge/marking methods should be employed.
 - ✓ Hard endpoints should be identified (i.e mortality vs. morbidity).

Cont.

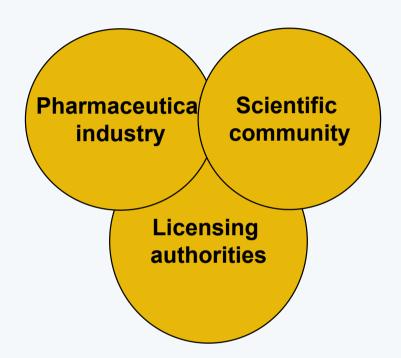
Batch Safety

- ✓ Applying consistency approach by removing batch safety test (EMEA/CVMP/865/03/final) after approval of 10 consequtive production batches (applicable for fully licensed products only?).
- ✓ Dobbel dose batch safety could be elliminated and combined with the batch potency test (single injection). "No" risk of dobbel injection during commersial operations.

Cont.

- Batch Potency
 - **✓** Replace *in vivo* challenge test with:
 - 1. In vitro methods
 - Antigen quantification assay (ie ELISA, quantitative immuneblot etc.) could replace most *in vivo* procedures (i.e batch release, stability of vaccine/bulk antigen).

Question: Is this approach possible with multivalent vaccines?


- 2. Serological antigen/antibody respons.
 - Validated methods for detecting specific antibodies post vaccination "may" have the potential as a alternative tool as a potency release test.

Question: Serological respons in fish may vary a lot also within family groups. Is fish the right target animal or would an alternative like chicken/rat be a better target animal for a serological test?

Future

Within 5 years

 Eliminate batch safety tests after 10 approved batches

Within 5-10 years

 Replaced batch potency by In vitro tests.

Refine the definition of research animal:

 Discriminate between fish animals that suffer (i.e. challenge) and animals that are handled by standard procedures used in the industry.

Conclusion

- In vivo vaccination-challenge studies are necessary tools in order to develop new vaccines that are safe and efficacious for the fish.
- The greatest potential of replacing in vivo test by in vitro assay is related to batch release and quality control of final product.
- The definition of study animals should be considered and clarified.
 - ✓ Should there be distinction between laboratory and commercial animals used in *in vivo* research studies?
 - ✓ Are fish vaccinated with autogenous vaccines research animals?

Thank you for your attention!

PHARMAQ
We make aquaculture progress!

